Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Neuroprotective effect of myoinositol on the cellular model of glutamate stress as a basis for the prevention of disorders of intrauterine development of the brain

https://doi.org/ 10.24411/2587-7836-2018-10018.

Abstract

Myoinositol is the basis for the synthesis of an important group of signal molecules, inositolphosphates, which mediate signal transmission from receptors of growth factors and neurotransmitters. Grants myo-Inositol promote the prevention of folate-resistant defects and neuroprotection of the fetal brain ischemia. The paper presents the results of a study of the effects of myoinositol on the growth of cerebellar neurons in culture under glutamate stress. It is shown that the effects of myoinositol on the survival of neurons (+17 %) exceed the effects of drugs that are usually used for neuroprotection (peptide extracts - + 10 %, choline preparations - no more than 3 %). Confirmed in the present work, a direct neuroprotective effect of myo-Inositol indicates the importance of the use of myo-Inositol during pregnancy with the aim of neuroprotection of the fetal brain.

About the Authors

A. G. Kalacheva
Federal State Budgetary Educational Institution of Higher Education «Ivanovo State Medical Academy» of the Ministry of Healthcare of the Russian Federation
Russian Federation


I. Yu. Torshin
Federal Research Center «Computer Science and Control» of the Russian Academy of Sciences
Russian Federation


E. V. Stelmashuk
Research Center of Neurology
Russian Federation


E. E. Genrikhs
Research Center of Neurology
Russian Federation


O. P. Alexandrova
Research Center of Neurology
Russian Federation


L. G. Khaspekov
Research Center of Neurology
Russian Federation


O. A. Gromova
Federal State Budgetary Educational Institution of Higher Education «Ivanovo State Medical Academy» of the Ministry of Healthcare of the Russian Federation; Federal Research Center «Computer Science and Control» of the Russian Academy of Sciences
Russian Federation


References

1. Здравоохранение в России. 2017: Стат.сб./Росстат. ISBN 978-5-89476-448-1, -М.: 2017, 170 с

2. Лиманова О.А., Громова О.А., Торшин И.Ю., и др. Систематический анализ молекулярно-физиологических эффектов мио-инозитола: данные молекулярной биологии, экспериментальной и клинической медицины // Эффективная фармакотерапия. - 2013;28 с. 32-41.

3. Larner J. D-chiro-inositol--its functional role in insulin action and its deficit in insulin resistance. Int J. Exp Diabetes Res. 2002;3(1):47-60.

4. Rapiejko PJ, Northup JK, Evans T., et al. G-proteins of fat-cells. Role in hormonal regulation of intracellular inositol 1,4,5-trisphosphate. Biochem J. 1986;240(1):35-40.

5. Fu C., Xu J., Cheng W., et al. Neuronal migration is mediated by inositol hexakisphosphate kinase 1 via a-actinin and focal adhesion kinase. Proc Natl Acad Sci U. S. A. 2017 Feb 21;114(8):2036-2041. DOI: 10.1073/ pnas.1700165114.

6. Walecki J., Barcikowska M., Cwikla JB, Gabryelewicz T. N-acetylaspartate, choline, myoinositol, glutamine and glutamate (glx) concentration changes in proton MR spectroscopy (1H MRS) in patients with mild cognitive impairment (MCI). Med Sci Monit. 2011;17(12):MT105-MT111.

7. Coupland NJ, Ogilvie CJ, Hegadoren KM, et al. Decreased prefrontal Myo-inositol in major depressive disorder. Biol Psychiatry. 2005;57(12):1526-34. DOI: 10.1016/j.biopsych.2005.02.027.

8. Holub BJ. Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr. 1986;6:563-97.

9. Андреева Н.А., Стельмашук Е.В., Исаев Н.К., и др. Нейропротекторные эффекты ноотропного дипептида ГВС-111 при кислородно-глюкозной депривации, глутаматной токсичности и оксидатовном стрессе in vitro// Бюлл. эксперим. биол. мед. - 2000. -Т130(10). -С.418-421.

10. Стельмашук Е.В., Новикова С.В., Исаев Н.К. Влияние глутамина на гибель культивированных зернистых нейронов, индуцированную глюкозной депривацией и химической гипоксией // Биохимия. - 2010. - Т. 75(8). - С.1150-1156.

11. Громова О.А., Торшин И.Ю., Гоголева И.В., и др. Фармакокинетический и фармакодинамический синергизм между нейропептидами и литием в реализации нейротрофического и нейропротективного действия церебролизина // Журнал неврологии и психиатрии им. С.С.Корсакова. -2015. - Т. 115(3). - С. 65-72. DOI: 10.17116/jnevro20151153165-72

12. Guo MF, Yu JZ, Ma CG. Mechanisms related to neuron injury and death in cerebral hypoxic ischaemia. Folia Neuropathol. 2011;49(2):78-87.

13. Ганнушкина И.В., Шафранова В.П., Рясина Т.В. Функциональная ангиоархитектоника головного мозга / АМН СССР - М.: Медицина. - 1977. - 240 с.

14. Hernandez-Fonseca K., Cardenas-Rodmguez N., Pedraza-Chaverri J., Massieu L. Calcium-dependent production of reactive oxygen species is involved in neuronal damage induced during glycolysis inhibition in cultured hippocampal neurons. J. Neurosci Res. 2008;86(8):1768-1780.

15. Громова О.А., Торшин И.Ю. Мультимодальный эффект церебролизина против воинствующего редукционизма. Неврологический вестник. - 2008. - 3. -С.83-91.

16. Cavalli P., Tonni G., Grosso E., Poggiani C. Effects of inositol supplementation in a cohort of mothers at risk of producing an NTD pregnancy. Birth Defects Res A Clin Mol Teratol. 2011 Nov;91(11):962-5. doi: 10.1002/bdra.22853. Epub 2011 Sep 28.

17. Cavalli P., Tedoldi S., Riboli B. Inositol supplementation in pregnancies at risk of apparently folate-resistant NTDs. Birth Defects Res A Clin Mol Teratol. 2008;82(7):540-2.

18. Beemster P., Groenen P., Steegers-Theunissen R. Involvement of inositol in reproduction. Nutr Rev. 2002;60(3):80-87.

19. Eriksson UJ, Wentzel P. Diabetic embryopathy. Methods Mol Biol. 2012;889:425-36.

20. Akashi M., Akazawa S., Akazawa M., et al. Effects of insulin and myo-inositol on embryo growth and development during early organogenesis in streptozocin-induced diabetic rats. Diabetes. 1991 Dec;40(12):1574-9.

21. Khandelwal M., Reece EA, Wu YK, Borenstein M. Dietary myoinositol therapy in hyperglycemia-induced embryopathy. Teratology. 1998 Feb;57(2):79-84. DOI: 10.1002/(SICI)1096-9926(199802)57:2<79::AID-TERA6>3.0.CO;2-1.

22. Copp AJ, Greene ND. Neural tube defects: Prevention by folic acid and other vitamins. The Indian Journal of Pediatrics. 2000;67(12):915-921.

23. Juriloff DM, Harris MJ. Mouse models for neural tube closure defects. Hum Mol Genet. 2000 Apr 12;9(6):993-1000.

24. Cogram P., Hynes A., Dunlevy LPE, et al. Specific isoforms of protein kinase C. are essential for prevention of folate-resistant neural tube defects by inositol. Hum Mol Genet. 2004;13(1):7-14.

25. Majerus PW, Wilson DB, Zhang C., et al. Expression of inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) and its role in neural tube defects. Adv Enzyme Regul. 2010;50(1):365-72.

26. Wilson MP, Hugge C., Bielinska M., et al. Neural tube defects in mice with reduced levels of inositol 1,3,4-trisphosphate 5/6-kinase. Proc Natl Acad Sci US A. 2009;106(24):9831-5.

27. Wang Y., Lian L., Golden JA, et al. PIP5KI gamma is required for cardiovascular and neuronal development. Proc Natl Acad Sci USA. 2007;104(28):11748-53.

28. Carlomagno G., Unfer V. Inositol safety: clinical evidences. Eur Rev Med Pharmacol Sci. 2011Aug;15(8):931-936.


Review

For citations:


Kalacheva A.G., Torshin I.Yu., Stelmashuk E.V., Genrikhs E.E., Alexandrova O.P., Khaspekov L.G., Gromova O.A. Neuroprotective effect of myoinositol on the cellular model of glutamate stress as a basis for the prevention of disorders of intrauterine development of the brain. Pharmacokinetics and Pharmacodynamics. 2018;(3):9-20. (In Russ.) https://doi.org/ 10.24411/2587-7836-2018-10018.

Views: 1783


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)