Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Matrix metalloproteinases and their inhibitors

https://doi.org/10.24411/2587-7836-2019-10040

Abstract

Metalloproteinase was discovered by Gross and Lapierre in 1962 for the first time. Since then, more than 20 enzymes of this family have been characterized, and their functions have been studied in detail. Metalloproteinases take part in blood pressure regulation, the cell matrix extension and remodeling, anesthesia, multiple sclerosis, blood coagulation, wound healing, tumor transformation and metastasis, etc. This review covers structure of matrix metalloproteinases, their mechanism of action, as well as MMP's endogenous and exogenous inhibitors. A special place is occupied by analysis of approaches to matrix metalloproteinases synthetic inhibitors and their activity. This review demonstrates the perspectivity of new selective matrix metalloproteinase inhibitors design.

About the Authors

O. S. Grigorkevich
FSBI «Zakusov Institute of Pharmacology»
Russian Federation


G. V. Mokrov
FSBI «Zakusov Institute of Pharmacology»
Russian Federation


L. Yu. Kosova
D. Mendeleev University of Chemical Technology of Russia
Russian Federation


References

1. Rivera S, Khrestchatisky M, Kaczmarek L, et al. Metzincin Proteases and Their Inhibitors: Foes or Friends in Nervous System Physiology? Journal of Neuroscience. 2010;30(46):15337–15357. DOI: https://doi.org/10.1523/ JNEUROSCI.3467-10.2010

2. Gupta SP. Quantitative StructureαActivity Relationship Studies on Zinc-Containing Metalloproteinase Inhibitors. Chemical Reviews. 2007;107(7):3042–3087. DOI: 10.1021/cr030448t

3. Verma RP, Hansch С. Matrix metalloproteinases (MMPs): Chemical–biological functions and (Q)SARs. Bioorganic & Medicinal Chemistry. 2007;5:2223-2268. DOI: 10.1016/j.bmc.2007.01.011

4. Ярмолинская М.И., Молотков А.С., Денисова В.М. Матриксные металлопротеиназы и ингибиторы: классификация, механизм действия // Журнал акушерства и женских болезней. – 2012. – Т. 61. – № 1. – С. 113–125. [Yarmolinskaya MI, Molotkov AS, Denisova VM. Matriksnye metalloproteinazy i ingibitory: klassifikatsiya, mekhanizm deistviya. Zhurnal akusherstva i zhenskikh boleznei. 2012;61(1):113-125. (In Russ).]

5. МаркеловаЕ.В., ЗдорВ.В., РоманчукА.Л. идр. Матриксные металлопротеиназы: их взаимосвязь с системой цитокинов, диагностический и прогностический потенциал // Иммунология, аллергология, инфектология. – 2016. – № 2. – С. 11–22. [Markelova EV, Zdor VV, Romanchuk AL, et al. Matriksnye metalloproteinazy: ikh vzaimosvyaz' s sistemoi tsitokinov, diagnosticheskii i prognosticheskii potentsial. Immunologiya, allergologiya, infektologiya. 2016;2:11–22. (In Russ).]

6. Zitka O, Kukacka J, Krizkova S, et al. Matrix Metalloproteinases. Current Medicinal Chemistry. 2010;17(31):3751–3768. DOI: 10.2174/092986710793213724

7. Woessner JF. The family of matrix metalloproteinases. Ann. NY Acad. Sci. 1994;732:11–21.

8. Supuran CT, Winum J, editors. Drug desighn of zinc-enzyme inhibitors. 1st ed. Hoboken: Wiley; 2009.

9. Maskos K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie. 2005;87:249–263. DOI: https:// doi.org/10.1016/j.biochi.2004.11.019

10. СоловьёваН.И. Основныеметаллопротеиназысоединительнотканногоматрикса // Биоорганическаяхимия. – 1994. – Т. 20. – № 2. – С. 143–152. [Solov'eva NI. Osnovnye metalloproteinazy soedinitel'notkannogo matriksa. Bioorganicheskaya khimiya. 1994;20(2):143–152. (In Russ).]

11. Butler GS. The canonical methionine 392 of matrix metalloproteinase 2 (gelatinase A) is not required for catalytic efficiency or structural integrity: probing the role of the methionine-turn in the metzincin metalloprotease superfamily. J. Biol. Chem. 2004;279(15):15615-15620. DOI:10.1074/jbc. m312727200

12. Lauer-Fields JI, Juska D, Fields GB. Matrix metalloproteinases and collagen metabolism. Biopolimers. 2002;66(1):19-32. DOI: 10.1002/bip.10201

13. Iyer RP, Patterson NL, Fields GB, et al. The History of Matrix Metalloproteinases (MMPs): Milestones, Myths, and (Mis)Perceptions. Am. J. Physiol. Heart Circ Physiol. 2012:17. DOI: 10.1152/ajpheart.00577.2012

14. Coussens LM, Werb Z. Matrix metalloproteinases and the development of cancer. Chem. Bio. 1996;3(11):895–904. DOI: http://dx.doi.org/10.1016/S1074-5521(96)90178-7

15. Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochemical pharmacology. 2008;75:346–359. DOI:10.1016/j.bcp.2007.07.004

16. Huxley-Jones J, Clarke TK, Beck C. The evolution of the vertebrate metzincins; Insights from Ciona intestinalis and Danio rerio. BMC Evol. Biol. 2007;7(1):63. DOI: 10.1186/1471-2148-7-63

17. Шадрина А.С. Матриксные металлопротеиназы: структура, функции и генетический полиморфизм // Патогенез. – 2017. – Т. 15. – № 2. – С. 14–23. [Shadrina AS. Matriksnye metalloproteinazy: struktura, funktsii i geneticheskii polimorfizm. Patogenez. 2017;15(2):14–23. (In Russ).] DOI: 10.25557/GM.2017.2.7297

18. Клишо Е.В. Матриксные металлопротеиназы в онкогенезе // Сибирский онкологический журнал. – 2003. – № 2 – С. 62–70. [Klisho EV. Matriksnye metalloproteinazy v onkogeneze. Sibirskii onkologicheskii zhurnal. 2003;2:62–70. (In Russ).]

19. Stack MS, Itoh Y, Young TN, et al. Fluorescence quenching studies of matrix metalloproteinases (MMPs): evidence for structural rearrangement of the proMMP-2/TIMP-2 complex upon mercurial activation. Arch. Biochem. Biophys. 1996;333(1):163–169. DOI: 10.1006/abbi.1996.0377

20. Kim TH, Mars WM. Expression and Activation of Pro-MMP-2 and Pro-MMP-9 During Rat Liver Regeneration. Hepatology. 2003;31(1):75–82. DOI: 10.1002/hep.510310114

21. Woessner JF, Jr. MMPs and TIMPs - An Historical Perspective. Mol Biotechnol. 2002;22(1):33-49. DOI: 10.1385/MB:22:1:033 22. Kim WU, Min SY, Cho ML, et al. Elevated matrix metalloproteinase 9 in patients with systemic Sclerosis. Arthritis Res. 2005;7(1):71–79. DOI: 10.1186/ar1454

22. Yu WH, Yu S, Meng Q, et al. TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. Biol Chem. 2000;275:31226–31232. DOI: 10.1074/jbc.M000907200

23. Hundsley MM, Edwards DR. Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer. 2005:11(6):849–860.

24. Whittaker M, Ayscought A. Matrix metalloproteinases and their inhibitors – current status and future challenges. Celltransmissions. 2001;17(1):3–14.

25. Schechter I, Berger A. Reprint of «On the size of the active site in proteases. I. Papain». Biochem. Biophys. Res. Communs. 2012;425(3):497–502. DOI: 10.1016/j.bbrc.2012.08.015

26. Vanhoutte D, Heymans S. TIMPs and cardiac remodeling: `Embracing the MMP-independent-side of the family`. J. Mol. Cell. Cardiol. 2010;48(3):445–453. DOI: 10.1016/j.yjmcc.2009.09.013

27. Fingleton B. Matrix Metalloproteinases as Valid Clinical Targets Current Pharmaceutical Design. Curr. Pharm. Des. 2007;13(3):333-346. DOI: 10.2174/138161207779313551

28. Thomas NV, Kim SK. Metalloproteinase Inhibitors: Status and Scope from Marine Organisms. Biochemistry Research International. 2010;2010:1–10. DOI:10.1155/2010/845975

29. Lindsey ML, Ma Y, Yabluchanskiy A. Matrix Metalloproteinase-9 Post Myocardial Infarction: Breakdowns and Breakthroughs. Global J. Hum. Anat. Physiol. Res. 2014;1(1):6–9.

30. Whittaker M, Floyd CD, Brown P, et al. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem. Rev. 1999;99(9):2735–2776. DOI. 10.1021/cr9804543.

31. Levin JI. The design and synthesis of aryl hydroxamic acid inhibitors of MMPs and TAC. Curr. Top. Med. Chem. 2004;4(12):1289–1310. DOI. 10.2174/1568026043387935

32. PharmaXChange.info [Internet]. Matrix Metalloproteinases: Its Implications in Cardiovascular Disorders [updated November 28, 2011]. Available from: http://pharmaxchange.info/press/2011/11/matrixmetalloproteinases-its-implications-in-cardiovascular-disorders/

33. Graff von Roedern E, Grams R, Brandstetter H, et al. Design and Synthesis of Malonic Acid-Based Inhibitors of Human Neutrophil Collagenase (MMP8). J. Med. Chem. 1998;41(3):339–345. DOI: 10.1021/jm9706426

34. Preece G, Murphy G, Agers A. Metalloproteinase-mediated Regulation of L-selectin Levels on Leucocytes. J Biol Chem. 1996;771(20):11634–11640. DOI: 10.1074/jbc.271.20.11634

35. Kontogiorgis CA, Papaioannou P, Hadjipavlou-Litina DJ. Matrix Metalloproteinase Inhibitors: A Review on Pharmacophore Mapping and (Q)Sars Results. Current Medicinal Chemistry. 2005;12(3):339–355. DOI:10.2174/0929867053363243

36. Peterson JT. The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors. Cardiovasc. Res. 2006;69:677–687. DOI:10.1016/j.cardiores.2005.11.032

37. Veerendhar A, Reich R, Breuer E. Phosphorus based inhibitors of matrix metalloproteinases. Comptes Rendus Chimie. 2010;13(8–9):1191–1202. DOI. 10.1016/j.crci.2010.07.003

38. Bender SL, Melwin AA. Metalloproteinase inhibitors, pharmaceutical composition containing them and their pharmaceutical compositions. United States patent US 5985900. 1999. Nov 16.

39. Kim SH, Pudzianowski AT, Leavitt KJ, et al. Structure-based design of potent and selective inhibitors of collagenase-3 (MMP-13). Bioorg Med Chem Lett. 2005;15(4):1101–1106. DOI:10.1002/chin.200526096

40. Wang J, Medina C, Radomski MW, et al. N-subsitutedhomopiperazine barbiturates as gelatinase inhibitors. Bioorg. Med. Chem. 2011;19(16):4985–4999. DOI:10.1016/j.bmc.2011.06.055

41. Wang J, O’Sullivan S, Harmon S, et al. Design of barbiturate-nitrate hybrids that inhibit MMP-9 activity and secretion. J Med Chem. 2012;55(5):2154–2162. DOI:10.1021/jm201352k

42. Wang J, Radomski MW, Medina C, et al. MMP inhibition by barbiturate homodimers. Bioorg Med Chem Lett. 2013;23(2):444–447. DOI:10.1016/j.bmcl.2012.11.063

43. Yue Zhong, Yu-Ting Lu, Ying Sun, et al. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opinion on Drug Discovery. 2017;13(1):75–87. DOI: 10.1080/17460441.2018.1398732

44. Jillian M Cathcart, Jian Cao. MMP Inhibitors: Past, present and future. Frontiers in Bioscience. 2015;20(7):1164–1178. DOI:10.2741/4365

45. Song J, Peng P, Chang J, et al. Selective non-zinc binding MMP-2 inhibitors: novel benzamide Ilomastat analogs with anti-tumor metastasis. Bioorg Med Chem Lett. 2016;26(9):2174–2178. DOI:10.1016/j.bmcl.2016.03.064.

46. clinicaltrials.gov [Internet]. BB-2516 [update 2004 May 26; cited 2018 Aug 17]. Available from: https://clinicaltrials.gov/ct2/ results?cond=&term=BB-2516&cntry=&state=&city=&dist

47. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst. 2001;93(3):178–193. DOI:10.1093/jnci/93.3.178

48. clinicaltrials.gov [Internet]. A Phase 1 Study of S-3304 in Patients With Solid Tumors [update 2002 Apr 10; cited 2018 Aug 17]. Available from: https://clinicaltrials.gov/ct2/show/NCT00033215?cond=matrix+metallo proteinase&draw=10&rank=55

49. clinicaltrials.gov [Internet]. Study of S-3304 in Patients With Locally Advanced Non-Small Cell Lung Cancer [update 2004 Feb 26; cited 2018 Aug 17]. Available from: https://clinicaltrials.gov/ct2/show/nct00078390

50. clinicaltrials.gov [Internet]. A Phase I Study of Oral COL-3 (NSC683551), a Matrix Metalloproteinase Inhibitor, in Patients With Refractory Metastatic [update 1999 Nov 4; cited 2018 Aug 17]. Available from: https:// clinicaltrials.gov/ct2/show/NCT00001683?cond=matrix+metalloproteina se&draw=4&rank=20

51. Grobelny D, Poncz L, Galardy RE. Inhibition of human skin fibroblast collagenase, thermolysin, and Pseudomonas aeruginosa elastase by peptide hydroxamic acids. Biochemistry. 1992;31(31):7152–-7154. DOI:10.1021/bi00146a017

52. Beckett RP, Whittaker M. Matrix metalloproteinase inhibitors 1998. Expert Opin Ther Pat. 1998;8(3):259–282. DOI.org/10.1517/13543776.8.3.259

53. clinicaltrials.gov [Internet]. Tetracycline (Doxycycline) and Post Myocardial Infarction Remodeling (TIPTOP) [update 2007 May 4; cited 2018 Aug 17]. Available from: https://clinicaltrials.gov/ct2/show/study/NCT00469261?cond=matrix+metalloproteinase&draw=10&rank=54

54. clinicaltrials.gov [Internet]. A Study of Doxycycline and Tauroursodeoxycholic Acid (Doxy/TUDCA) Plus Standard Supportive Therapy Versus Standard Supportive Therapy Alone in Cardiac Amyloidosis Caused by Transthyretin [update 2018 Mar 29; cited 2018 Aug 17]. Available from: https:// clinicaltrials.gov/ct2/show/NCT03481972?term=Doxycicline&rank=1


Review

For citations:


Grigorkevich O.S., Mokrov G.V., Kosova L.Yu. Matrix metalloproteinases and their inhibitors. Pharmacokinetics and Pharmacodynamics. 2019;(2):3-16. (In Russ.) https://doi.org/10.24411/2587-7836-2019-10040

Views: 9373


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)