Preview

Фармакокинетика и Фармакодинамика

Расширенный поиск

Цитопротекторные свойства дипептидных миметиков фактора роста нервов и мозгового нейротрофического фактора, ГК-2 и ГСБ-106, в модели окислительного стресса у инфузорий

https://doi.org/ 10.24411/2587-7836-2018-10028

Содержание

Перейти к:

Аннотация

Актуальность. В НИИ фармакологии имени В.В. Закусова были созданы димерные дипептидные миметики фактора роста нервов (nerve growth factor, NGF) и мозгового нейротрофического фактора (brain derived neurotrophic factor, BDNF), соответственно ГК-2 и ГСБ-106. Установлено подобие ГК-2 и ГСБ-106 соответствующим полноразмерным нейротрофинам по механизму действия и фармакологическим свойствам, включая выраженную нейропротекторную активность in vitro и in vivo. Целью данной работы было получение дополнительных данных о цитопротекторных свойствах ГК-2 и ГСБ-106 с использованием инфузорий. Методы. Окислительный стресс у инфузорий Paramecium caudatum моделировали добавлением в среду солей тяжёлых металлов (хлорид кадмия, ацетат свинца, сульфат меди, сульфат цинка) в конечных концентрации 10 мкМ. За 45 мин до внесения инициатора окислительного стресса в среду с опытными клетками добавляли ГК-2 или ГСБ-106 в концентрациях от 10-5 до 10-8 М. Результаты. Дипептиды ГК-2 и ГСБ-106 во всех изученных концентрациях защищали клетки от гибели. Максимальный нейропротекторный эффект дипептиды проявляли в концентрации 10-8 М, полностью предотвращая гибель инфузорий. Заключение. ГК-2 и ГСБ-106 в концентрации 108 М полностью защищают от гибели инфузории Paramecium caudatum в условиях окислительного стресса, вызванного солями тяжёлых металлов.

Для цитирования:


Карпухина О.В., Иноземцев А.Н., Гумаргалиева К.З., Поварнина П.Ю., Гудашева Т.А. Цитопротекторные свойства дипептидных миметиков фактора роста нервов и мозгового нейротрофического фактора, ГК-2 и ГСБ-106, в модели окислительного стресса у инфузорий. Фармакокинетика и Фармакодинамика. 2018;(4):37-41. https://doi.org/ 10.24411/2587-7836-2018-10028

For citation:


Karpukhina O.V., Inozemtsev A.N., Gumargalieva K.Z., Povarnina P.Yu., Gudasheva T.A. Cytoprotective properties of the nerve growth factor and brain derived neurotrophic factor dipeptidic mimetics, GK-2 AND GSB-106, in the model of oxidative stress in paramecium caudatum. Pharmacokinetics and Pharmacodynamics. 2018;(4):37-41. (In Russ.) https://doi.org/ 10.24411/2587-7836-2018-10028

Введение

Нейродегенерация в головном мозге — ключевое звено патогенеза ряда широко распространённых заболеваний, таких как нарушения мозгового кровообращения, болезни Альцгеймера и Паркинсона, депрессия и др. Инвалидизация вследствие нейродегенеративных процессов представляет собой серьёзную социальноэкономическую проблему, поэтому поиск высокоэффективных нейропротекторов является актуальной задачей фармакологии.

Высоким терапевтическим потенциалом обладают эндогенные нейропротекторные белки — нейротрофины, такие как мозговой нейротрофический фактор (brainderivedneurotrophicfactor, BDNF) и фактор роста нервов (nervegrowthfactor, NGF) [1]. Однако клиническое применение нейротрофинов ограничено нестабильностью в биологических жидкостях, плохой способностью проникать через гематоэнцефалический барьер и побочными эффектами, обусловленными плейотропностью [2, 3].

В НИИ фармакологии имени В.В. Закусова на основе бета-изгибов 4 петель NGF и BDNF сконструированы и синтезированы димерные дипептиды, соответственно гексаметилендиамид бис(N-моносукцинилL-глутамил-L-лизина (ГК-2) и гексаметилендиамид бис(N-моносукцинил-L-серил-L-лизина) (ГСБ-106) [Патент РФ №2410392, 2010; Патент США № 9683014 B2, 2017; Патент Китая №102365294 B, 2016]. Показано, что ГК-2 и ГСБ-106 активируют специфические для полноразмерного белка тирозинкиназные рецепторы, соответственно TrkA и TrkB, и обладают нейропротекторной активностью invitro в микро-наномолярных концентрациях на различных клеточных моделях, в том числе на модели окислительного стресса [46]. Нейропротекторная активность ГК-2 и ГСБ-106 была подтверждена invivo на модели обширного ишемического инсульта, вызванного транзиторной окклюзией средней мозговой артерии у крыс [7–9]. Для ГК-2 было показано, что он лишен основных побочных эффектов, характерных для NGF, а именно он не вызывает гиперальгезии и потери веса [6].

Для получения дополнительных данных о цитопротекторных свойствах дипептидов ГК-2 и ГСБ-106 представляло интерес изучить их на модели окислительного стресса у инфузорий [10, 11]. Известно, что окислительный стресс является одним из основных механизмов повреждения нейронов при различных патологиях. Для моделирования окислительного стресса как invitro, так и invivo широко используются соли тяжёлых металлов [11–13] – экзотоксикантов, потенциально опасных для всех живых организмов. Ионы свинца, кадмия, цинка и других тяжёлых металлов способны инициировать генерацию избыточного количества активных форм кислорода [13–15], повышенный уровень которых в клетке способствует запуску цепных реакций окислительной деградации биомолекул.

Одноклеточные, в частности инфузории, представляют собой удобный модельный организм для фармакологических исследований, поскольку в данном случае преимущества, свойственные использованию культуры клеток, дополняются тем, что в данном случае тестсистемой является одновременно и отдельная клетка, и целостный организм. Следует отметить, что для инфузорий, как и для других одноклеточных организмов, нет данных в литературе о наличии тирозинкиназных рецепторов, подобных рецепторам нейротрофинов у позвоночных, которые могли бы опосредовать фармакологические эффекты дипептидов ГК-2 и ГСБ-106. Тем не менее, у инфузорий были обнаружены ростовые факторы, регулирующие выживаемость и пролиферацию, подобные нейротрофинам [16, 17], что предполагает наличие подобных рецепторных систем.

Целью данного исследования стало изучение эффективности дипептидных миметиков нейротрофинов ГК-2 и ГСБ-106 в модели окислительного стресса у инфузорий, вызванного солями тяжёлых металлов.

Материалы и методы

Работа выполнена на культуре Раrameciumcaudatum – одном из наиболее часто используемых тест-объектов для лабораторных исследований, направленных на определение прямого действия химических соединений. Культуру клеток парамеций выращивали на среде Лозина–Лозинского с добавлением питательной среды, содержащей дрожжи Saccharomycescerevisiae. Клетки, взятые в log-фазе роста, инкубировались при температуре 24 ± 2 С, рН = 6,8–7,0.

Окислительный стресс моделировали [10] добавлением к 1 мл среды с инфузориями Parameciumcaudatum 1 мл водного раствора одной из солей металлов (хлорид кадмия, ацетат свинца, сульфат меди, сульфат цинка) в конечных концентрациях 1; 5; 10 и 15 мкМ. Длительность инкубирования клеток в среде, содержащей соль тяжёлого металла, составляла 15 мин, 30 мин, 45 мин, 1 час, 2 часа, 6 часов. За 45 мин до внесения инициатора окислительного стресса в среду с опытными клетками добавлялся 1 мл раствора ГК-2 или ГСБ-106 в концентрациях от 10–5 до 10–8 М. Активные концентрации ГК-2 и ГСБ-106 были выбраны на основании предыдущих экспериментов [4, 5, 18].

На всех этапах эксперимента с помощью pH-метр контроллера KelilongPH-221 измеряли рН среды. Регистрировали численность клеток, интенсивность их деления; характер и скорость движения инфузории, изменение формы клетки. Численность клеток определяли под микроскопом при увеличении 7-10 с видеорегистрацией путём подсчёта их общего количества в 1 мл культуры.

Полученные результаты представлены как среднее арифметическое ± стандартная ошибка среднего. После проверки распределения на нормальность значимость различий между группами оценивали с помощью t-критерия Стьюдента. Различия считали достоверными при р < 0,05.

Результаты и обсуждение

Под влиянием действия ионов тяжёлых металлов численность клеток заметно снизилась, особенно выраженные последствия отмечались при концентрациях 10–15 мкМ солей тяжёлых металлов (рис. 1). При этом в клетке происходил ряд морфологических изменений, в том числе реорганизация структур цитоскелета, приводящих к клеточной гибели. Наблюдалось набухание органелл цитоплазмы, которое приводило к разрыву мембраны клетки парамеций. Снижение численности опытных клеток в результате деструктивной мембранной патологии свидетельствовало об интенсификации процессов свободно-радикального окисления, вызванной ионами тяжёлых металлов. После 6 ч инкубации с растворами солей тяжёлых металлов (10 мкМ) количество выживших клеток в культуре Раrameciumcaudatum составило примерно от 15 до 25 % от пассивного контроля (без повреждения) (максимальное количество — в среде с сульфатом меди).

Дипептиды ГК-2 и ГСБ-106 во всех изученных концентрациях защищали клетки от гибели, вызванной действием тяжёлых металлов. Максимальный нейропротекторный эффект дипептиды проявляли в концентрации 10–8 М (рис. 2). В этой концентрации исследуемые соединения практически полностью предотвращали гибель инфузорий даже через 6 ч инкубирования с солями тяжёлых металлов (10 мкМ) (см. рис. 2).

Эффективность ГК-2 и ГСБ-106 в данной модели предполагает, что у Parameciumcaudatum присутствуют рецепторные системы, подобные тирозинкиназным рецепторам нейротрофинов у позвоночных, что соответствует литературным данным о наличии у инфузорий ростовых факторов, регулирующих выживаемость и пролиферацию [16, 17].

Заключение

Таким образом, нами установлено, что дипептидные миметики NGF и BDNF, соответственно ГК-2 и ГСБ106, в концентрации 10–8 М полностью защищают от гибели клетки Paramecium caudatum в условиях окислительного стресса, вызванного солями тяжёлых металлов (хлоридом кадмия, ацетатом свинца, сульфатом меди, сульфатом цинка).

Список литературы

1. Allen SJ, Watson JJ, Shoemark DK, et al. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138(2):155–175. DOI: 10.1016/j.pharmthera.2013.01.004

2. Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med. 2012;10(1):239. DOI: 10.1186/1479-5876-10-239

3. Dunkel P, Chai CL, Sperl gh B, et al. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer’s, Parkinson’s and Huntington’s diseases, and amyotrophic lateral sclerosis. ExpertOpinInvestigDrugs. 2012;21(9):1267–1308. DOI: 10.1517/13543784.2012.703178

4. Антипова Т.А., Гудашева Т.А., Середенин С.Б. Исследование invitro нейропротективных свойств нового оригинального миметика фактора роста нервов ГК-2 // Бюллетень экспериментальной биологии и медицины. – 2010. – Т. 150. – № 11. – С.5 37-540. [Antipova TA, Gudasheva TA, Seredenin SB. In vitro study of neuroprotective properties of GK-2, a new original nerve growth factor mimetic. Bulleten experimentalnoy biologii i medicini. 2011;150(5):607–9. (in Russ).].

5. Гудашева Т.А., Тарасюк А.В., Помогайбо СВ и др. Дизайн и синтез дипептидных миметиков мозгового нейротрофического фактора // Биоорганическая Химия. – 2012. – Т. 38. – № 3. – С. 280–290. [Gudasheva TA, Tarasyuk AV., Pomogaybo SV, et al. Design and synthesis of dipeptide mimetics of brain-derived neurotrophic factor. Bioorganicheskaya chimiya. 2012;38(3):280–90. (In Russ).]

6. Gudasheva TA, Povarnina PY, Antipova TA, et al. Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction. J Biomed Sci. 2015;22(5):106. DOI: 10.1186/s12929-015-0198-z

7. Gudasheva TA, Povarnina P, Logvinov IO, et al. Mimetics of brainderived neurotrophic factor loops 1 and 4 are active in a model of ischemic stroke in rats. Drug Des Devel Ther. 2016;10:3545–3553. DOI: 10.2147/DDDT.S118768

8. Povarnina P, Gudasheva TA, Seredenin SB. Dimeric dipeptide mimetics of NGF and BDNF are promising agents for post-stroke therapy. JBiomedSciEng. 2018;11(5):100–107. DOI: 10.4236/jbise.2018.115009

9. Середенин С.Б., Поварнина П.Ю., Гудашева Т.А. Экспериментальная оценка терапевтического окна нейропротективной активности препарата ГК-2, низкомолекулярного миметика фактора роста нервов // Журнал неврологии и психиатрии имени С.С. Корсакова. – 2018. – Т. 118. – № 7. – С. 49–53. DOI: 10.17116/jnevro20181187149 [Seredenin SB, Povarnina PY, Gudasheva TA, et al. An experimental evaluation of the therapeutic window of the neuroprotective activity of a low-molecular nerve growth factor mimetic GK-2. Zhurnal Nevrol i psikhiatrii im SS Korsakova. 2018;118(7):49. (in Russ).].

10. Karpukhina OV, Gumargalieva KZ, Inozemtsev AN. The effect of antioxidant compounds on oxidative stress in unicellular aquatic organisms. In: On the borders of physics, chemistry, biology, medicine and agriculture. Research and Development. Torun: Institute for Engineering of polymer materials and Dues. 2014:145–151.

11. Morgunov IG, Karpukhina OV, Kamzolova SV, et al. Investigation of the effect of biologically active threo-Ds-isocitric acid on oxidative stress in Paramecium caudatum. Prep Biochem Biotechnol. 2018;48(1):1–5. DOI: 10.1080/10826068.2017.1381622

12. Simmons SO, Fan C-Y, Yeoman K, et al. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent. Curr Chem Genomics. 2011;5:1–12. DOI: 10.2174/1875397301105010001

13. Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001;1(6):529–539. DOI: 10.2174/1568026013394831

14. Flora SJS, Mittal M, Mehta A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res. 2008;128(4):501– 523. DOI: 10.1093/jexbot/53.366.1

15. Pryor WA. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol. 1986;48:657–667. DOI: 10.1146/annurev.physiol.48.1.657

16. Tanabe H, Nishi N, Takagi Y, et al. Purification and identification of a growth factor produced by Paramecium tetraurelia. Biochem Biophys Res Commun. 1990;170(2):786–792. DOI: 10.1016/0006-291X(90)92160-2

17. Rasmussen MI, Wheatley DN. Purification and characterisation of cell survival factor 1 (TCSF1) from Tetrahymena thermophila. J Cell Commun Signal. 2007;1(3-4):185–193. DOI: 10.1007/s12079-007-0016-9

18. Гудашева ТА, Антипова ТА, Середенин СБ. Новые низкомолекулярные миметики фактора роста нервов. Доклады Академии Наук. 2010;4(1):549–552. [Gudasheva TA, Antipova TA, Seredenin SB. Novel lowmolecular-weight mimetics of the nerve growth factor. Dokl Biochem Biophys. 2010 Sep-Oct;434:262-5. (In Russ).] DOI: 10.1134/S160767291005011X


Об авторах

Ольга Вячеславовна Карпухина
МГУ им. М. В. Ломоносова
Россия


Анатолий Николаевич Иноземцев
МГУ им. М. В. Ломоносова
Россия


Клара Зенноновна Гумаргалиева
Институт химической физики им. Н.Н. Семёнова РАН
Россия


Полина Юрьевна Поварнина
ФГБНУ «Научно-исследовательский институт фармакологии имени В.В. Закусова»
Россия


Татьяна Александровна Гудашева
ФГБНУ «НИИ фармакологии имени В.В. Закусова»
Россия


Рецензия

Для цитирования:


Карпухина О.В., Иноземцев А.Н., Гумаргалиева К.З., Поварнина П.Ю., Гудашева Т.А. Цитопротекторные свойства дипептидных миметиков фактора роста нервов и мозгового нейротрофического фактора, ГК-2 и ГСБ-106, в модели окислительного стресса у инфузорий. Фармакокинетика и Фармакодинамика. 2018;(4):37-41. https://doi.org/ 10.24411/2587-7836-2018-10028

For citation:


Karpukhina O.V., Inozemtsev A.N., Gumargalieva K.Z., Povarnina P.Yu., Gudasheva T.A. Cytoprotective properties of the nerve growth factor and brain derived neurotrophic factor dipeptidic mimetics, GK-2 AND GSB-106, in the model of oxidative stress in paramecium caudatum. Pharmacokinetics and Pharmacodynamics. 2018;(4):37-41. (In Russ.) https://doi.org/ 10.24411/2587-7836-2018-10028

Просмотров: 682


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)