The study of antiparkinsonian activity of the combination of ladasten with fabomotizole in paraquat-induced model of parkinsoian syndrome
https://doi.org/10.37489/2587-7836-2025-1-43-52
EDN: JGKWSH
Abstract
Relevance. Parkinson's disease (PD) is a neurodegenerative disease characterized by motor impairments. The currently used antiparkinsonian pharmacotherapy, despite the symptomatic improvement of patients, is associated with severe side effects. The combination of ladasten with fabomotizole may have a potential neuroprotective effect in the neurodegeneration conditions observed in PD, due to its multitargeting action.
Objective. The study explores the potential antiparkinsonian activity of a combination of ladasten and fabomotizole in paraquat-induced model of parkinsonian syndrome (PS).
Methods. PS was modeled by intraperitoneal administration of paraquat (10 mg/kg) 1 time every 3–4 days for 21 days. The C57Bl/6 mice were divided into 4 groups: 1) passive control, 2) active control, 3) ladasten + fabomotizole combination, 4) levodopa. The animals were tested in the battery of behavioral tests each week of the experiment.
Results. The combination of ladasten with fabomotizole successfully treated all manifestations of PS in the battery of behavioral tests, and the greatest difference compared with the active control was found in most tests on the 3rd week of the experiment. Thus, the combination increased latency to fall in the «rotarod test» by 2,38 (p < 0.0001) and 1.5 times (p < 0.01) at fixed and accelerating speed, decreased the turning and descent time in the «pole test» by 1.4 (p < 0.05) and 1.53 times (p < 0.001).
Conclusion. The combination of ladasten with fabomotizole reduced the severity of paraquat-induced PS in the battery of behavioral tests, and it was comparable with the effects of levodopa.
Keywords
About the Authors
V. E. MarievskiiRussian Federation
Valentin E. Marievskii — Junior Researcher at the Laboratory of Molecular Pharmacology Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies.
Moscow
İ. A. Lyubanskii
Russian Federation
Ivan A. Lyubanskii — laboratory assistant-researcher of Laboratory of Molecular Pharmacology Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies.
Moscow
S. V. Shangin
Russian Federation
Stanislav V. Shangin — Junior Researcher of Laboratory of Molecular Pharmacology Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies.
Moscow
L. F. Zainullina
Russian Federation
Liana F. Zainullina — PhD, Cand. Sci. (Biology), Head of laboratory of molecular pharmacology Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies.
Moscow
V. L. Dorofeev
Russian Federation
Vladimir L. Dorofeev — PhD, Dr. Sci. (Pharm), Professor, Acting General Director of Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies.
Moscow
References
1. Simon DK, Tanner CM, Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin Geriatr Med. 2020 Feb;36(1): 1-12. doi: 10.1016/j.cger.2019.08.002.
2. Yevtushenko SK, Golovchenko YuI, Trufanov YeA. Parkinson's disease and Parkinsonian syndromes (lecture). International Neurological Journal. 2014;4(66):16-31. (In Russ.).
3. Illarioshkin SN. Modern approaches to the treatment of Parkinson's disease. Nervous Diseases. 2004;(4):14-21. (In Russ.).
4. Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson's disease. Lancet Neurol. 2021 May;20(5):385-397. doi: 10.1016/S1474-4422(21)00030-2.
5. Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017 Mar 23;3:17013. doi: 10.1038/nrdp.2017.13.
6. Goldman JG, Sieg E. Cognitive Impairment and Dementia in Parkinson Disease. Clin Geriatr Med. 2020 May;36(2):365-377. doi: 10.1016/j.cger.2020.01.001.
7. Ingelsson M. Alpha-Synuclein Oligomers-Neurotoxic Molecules in Parkinson's Disease and Other Lewy Body Disorders. Front Neurosci. 2016 Sep 5;10:408. doi: 10.3389/fnins.2016.00408.
8. Vekrellis K, Xilouri M, Emmanouilidou E, et al. Pathological roles of α-synuclein in neurological disorders. Lancet Neurol. 2011 Nov;10(11):1015-25. doi: 10.1016/S1474-4422(11)70213-7.
9. Bi M, Du X, Jiao Q, et al. Expanding the role of proteasome homeostasis in Parkinson's disease: beyond protein breakdown. Cell Death Dis. 2021 Feb 4; 12(2):154. doi: 10.1038/s41419-021-03441-0.
10. Troncoso-Escudero P, Parra A, Nassif M, Vidal RL. Outside in: Unraveling the Role of Neuroinflammation in the Progression of Parkinson's Disease. Front Neurol. 2018 Oct 15;9:860. doi: 10.3389/fneur.2018.00860.
11. Axmetzhanov VK, Shashkin ChS, Kerimbaev TT. Parkinson's disease. Diagnostic criteria. Differential diagnosis. Neurosurgery and Neurology of Kazakhstan. 2016;4(45):18-25. (In Russ.).
12. Bähr M. Neuroprotection: models, mechanisms and therapies. John Wiley & Sons; 2006.
13. Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet. 2021 Jun 12;397(10291):2284-2303. doi: 10.1016/S0140-6736(21)00218-X.
14. Titova NV, Portupeev AA. Practical aspects of prescribing antiparkinsonian drugs. The place of amantadines in the management of Parkinson’s disease. Meditsinskiy sovet = Medical Council. 2021;(1):63-74. (In Russ.). doi: 10.21518/2079-701X-2021-2-63-74.
15. Vaxitova YuV. On the mechanism of ladasten action. E`ksperimental`naya i klinicheskaya farmakologiya. 2021;84(2):34-40. (In Russ.) doi: 10.30906/0869-2092-2021-84-2-34-40.
16. Voronin MV, Kadnikov IA, Voronkov DN, Seredenin SB. Chaperone Sigma1R mediates the neuroprotective action of afobazole in the 6-OHDA model of Parkinson's disease. Sci Rep. 2019 Nov 19;9(1):17020. doi: 10.1038/s41598-019-53413-w.
17. Rudyk C, Dwyer Z, McNeill J, et al. Chronic unpredictable stress influenced the behavioral but not the neurodegenerative impact of paraquat. Neurobiol Stress. 2019 May 31;11:100179. doi: 10.1016/j.ynstr.2019.100179.
18. Marievskii VE, Zainullina LF. The study of the antiparkinsonian activity of the combination of ladasten with fabomotizole in 6-hydroxydophamine model of parkinsonian syndrome. Eksperimental'naya i klinicheskaya farmakologiya. 2024;87(9):9-14. (In Russ.). doi: 10.30906/0869-2092-2024-87-9-9-14.
19. Valdman E, Kapitsa I, Ivanova Е, et al. Evolution of anti-parkinsonian activity of monoterpenoid (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol in various in vivo models. Eur J Pharmacol. 2017 Nov 15;815:351-363. doi: 10.1016/j.ejphar.2017.09.022.
20. Glajch KE, Fleming SM, Surmeier DJ, Osten P. Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson's disease. Behav Brain Res. 2012 May 1;230(2):309-16. doi: 10.1016/j.bbr.2011.12.007.
21. Brooks SP, Trueman RC, Dunnett SB. Assessment of Motor Coordination and Balance in Mice Using the Rotarod, Elevated Bridge, and Footprint Tests. Curr Protoc Mouse Biol. 2012 Mar 1;2(1):37-53. doi: 10.1002/9780470942390.mo110165.
22. Brooks AI, Chadwick CA, Gelbard HA, et al. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res. 1999 Mar 27;823(1-2):1-10. doi: 10.1016/s0006-8993(98)01192-5.
23. McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis. 2002 Jul;10(2):119-27. doi: 10.1006/nbdi.2002.0507.
24. Dinis-Oliveira RJ, Remião F, Carmo H, et al. Paraquat exposure as an etiological factor of Parkinson's disease. Neurotoxicology. 2006 Dec;27(6):1110-22. doi: 10.1016/j.neuro.2006.05.012.
25. Darweesh SKL, Vermeulen RCH, Bloem BR. Paraquat and Parkinson's disease: has the burden of proof shifted? Int J Epidemiol. 2024 Aug 14; 53(5):dyae126. doi: 10.1093/ije/dyae126.
26. Sharma P, Mittal P. Paraquat (herbicide) as a cause of Parkinson's Disease. Parkinsonism Relat Disord. 2024 Feb;119:105932. doi: 10.1016/j.parkreldis.2023.105932.
27. Richardson JR, Quan Y, Sherer TB, et al. Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci. 2005 Nov;88(1): 193-201. doi: 10.1093/toxsci/kfi304.
28. Ishola IO, Akinyede AA, Adeluwa TP, Micah C. Novel action of vinpocetine in the prevention of paraquat-induced parkinsonism in mice: involvement of oxidative stress and neuroinflammation. Metab Brain Dis. 2018 Oct;33(5):1493-1500. doi: 10.1007/s11011-018-0256-9.
29. McKnight S, Hack N. Toxin-Induced Parkinsonism. Neurol Clin. 2020 Nov;38(4):853-865. doi: 10.1016/j.ncl.2020.08.003.
30. Bastías-Candia S, Zolezzi JM, Inestrosa NC. Revisiting the Paraquat-Induced Sporadic Parkinson's Disease-Like Model. Mol Neurobiol. 2019 Feb;56(2):1044-1055. doi: 10.1007/s12035-018-1148-z.
31. Wang K, Zhang B, Zhang B, et al. Paraquat Inhibits Autophagy Via Intensifying the Interaction Between HMGB1 and α-Synuclein. Neurotox Res. 2022 Apr;40(2):520-529. doi: 10.1007/s12640-022-00490-x.
32. Monville C, Torres EM, Dunnett SB. Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. J Neurosci Methods. 2006 Dec 15;158(2): 219-23. doi: 10.1016/j.jneumeth.2006.06.001.
33. Dinis-Oliveira RJ, Duarte JA, Sánchez-Navarro A, et al. Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol. 2008;38(1):13-71. doi: 10.1080/10408440701669959.
34. Miroshnichenko II, Kudrin VS, Sergeeva SA, et al. Vliyanie bromantana na dofamin-i serotoninergicheskuyu sistemu golovnogo mozga kry`s. Eksperimental'naya i klinicheskaya farmakologiya. 1995;58(4):8-11. (In Russ.).
35. Morozov IS, Pukhova GS, Avdulov NA, et al. Mechanisms of bromantan neurotropic effect. Eksperimental'naya i klinicheskaya farmakologiya. 1999;62(1):11-14. (In Russ.).
36. Kadnikov IA, Voronkov DN, Voronin MV, et al. Analysis of the Role of Quinone Reductase 2 in the Mechanism of Anti-Parkinsonic Action of Afobazole. Neirokhimiya. 2020;37(2):173-182. (In Russ.). doi: 10.31857/S1027813320010112.
37. Zenina TA, Gavrish IV, Melkumyan DS, et al. Neuroprotective properties of afobazol in vitro. Byulleten' eksperimental'noi biologii i meditsiny. 2005;140(8):161-163. (In Russ.). doi: 10.1007/s10517-005-0443-7.
38. Seredenin SB, Povarova OV, Medvedev OS, et al. Evidence for the neuroprotective properties of afobazole in experimental model of focal brain ischemia. Eksperimental'naya i klinicheskaya farmakologiya. 2006;69(4):3-5. (In Russ.). doi: 10.30906/0869-2092-2006-69-4-3-5.
Review
For citations:
Marievskii V.E., Lyubanskii İ.A., Shangin S.V., Zainullina L.F., Dorofeev V.L. The study of antiparkinsonian activity of the combination of ladasten with fabomotizole in paraquat-induced model of parkinsoian syndrome. Pharmacokinetics and Pharmacodynamics. 2025;(1):43-52. (In Russ.) https://doi.org/10.37489/2587-7836-2025-1-43-52. EDN: JGKWSH