Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Dimeric dipeptide mimetics of BDNF loop 4 are potential antidepressants with novel mechanisms of action

https://doi.org/10.37489/2587-7836-2024-4-3-16

EDN: KGXWCF

Abstract

This review covers original research focused on the design, synthesis, and pharmacological evaluation of an innovative dimeric dipeptide mimetic of brain-derived neurotrophic factor (BDNF) loop 4 bis-(N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide (GSB-106). Developed using a proprietary approach for creating low-molecular-weight neurotrophin mimetics, GSB-106 displayed marked antidepressant-like activity following systemic and oral administration. The article details its pharmacological properties in vitro and in vivo, mechanism of action, development of a tablet form of the dipeptide, and findings from toxicological and pharmacokinetic studies.

About the Authors

T. A. Gudasheva
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Tatiana A. Gudasheva – PhD, Dr. Sci. (Biology), Professor, RAS corresponding member, Head of medicinal chemistry department

Moscow



P. Yu. Povarnina
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Polina Yu. Povarnina – PhD, Cand. Sci. (Biol.), Leading Research Scientist of the Laboratory of Peptide Bioregulators of the Medicinal Chemistry Department

Moscow



A. V. Tarasyuk
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Alexey V. Tarasyuk – PhD, Cand. Sci. (Chemical), Senior Research Scientist of Laboratory of Peptide Bioregulators of Medicinal Chemistry Department

Moscow



V. P. Zherdev
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Vladimir P. Zherdev – PhD, Dr. Sci. (Med.), professor, Head of laboratory pharmacokinetics

Moscow



A. D. Durnev
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Andrei D. Durnev – PhD, Dr. Sci. (Med.), professor, corresponding member RAS, Head of the department of drug toxicology

Moscow



References

1. McIntyre RS, Alsuwaidan M, Baune BT, et al. Treatment-resistant depression: definition, prevalence, detection, management, and investigational interventions. World Psychiatry. 2023;22(3):394-412. doi: 10.1002/wps.21120.

2. Li K, Zhou G, Xiao Y, et al. Risk of Suicidal Behaviors and Antidepressant Exposure Among Children and Adolescents: A Meta-Analysis of Observational Studies. Front Psychiatry. 2022;13:880496. doi: 10.3389/fpsyt.2022.880496.

3. Wang SM, Han C, Bahk WM, et al. Addressing the Side Effects of Contemporary Antidepressant Drugs: A Comprehensive Review. Chonnam Med J. 2018;54(2):101-112. doi: 10.4068/cmj.2018.54.2.101.

4. McIntyre RS, Rosenblat JD, Nemeroff CB, et al. Synthesizing the Evidence for Ketamine and Esketamine in Treatment-Resistant Depression: An International Expert Opinion on the Available Evidence and Implementation. Am J Psychiatry. 2021;178(5):383-399. doi: 10.1176/appi.ajp.2020.20081251.

5. Sakurai H, Yonezawa K, Tani H, et al. Novel Antidepressants in the Pipeline (Phase II and III): A Systematic Review of the US Clinical Trials Registry. Pharmacopsychiatry. 2022;55(4):193-202. doi: 10.1055/a-1714-9097.

6. Vasiliu O. Investigational Drugs for the Treatment of Depression (Part 1): Monoaminergic, Orexinergic, GABA-Ergic, and Anti-Inflammatory Agents. Front Pharmacol. 2022;13:884143. doi: 10.3389/fphar.2022.884143.

7. Liu W, Ge T, Leng Y, et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast. 2017;2017:6871089. doi: 10.1155/2017/6871089.

8. Numakawa T, Odaka H, Adachi N. Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int J Mol Sci. 2018;19(11):3650. doi: 10.3390/ijms19113650.

9. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001;21(17):6706-17. doi: 10.1523/ JNEUROSCI.21-17-06706.2001.

10. Correia AS, Cardoso A, Vale N. BDNF Unveiled: Exploring Its Role in Major Depression Disorder Serotonergic Imbalance and Associated Stress Conditions. Pharmaceutics. 2023;15(8):2081. doi: 10.3390/pharmaceu-tics15082081.

11. Polyakova M, Stuke K, Schuemberg K, et al. BDNF as a biomarker for successful treatment of mood disorders: a systematic & quantitative meta-analysis. J Affect Disord. 2015;174:432-40. doi: 10.1016/j.jad.2014.11.044.

12. Allen AP, Naughton M, Dowling J, et al. Serum BDNF as a peripheral biomarker of treatment-resistant depression and the rapid antidepressant response: A comparison of ketamine and ECT. J Affect Disord. 2015;186:306-11. doi: 10.1016/j.jad.2015.06.033.

13. Karege F, Vaudan G, Schwald M, et al. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res. 2005;136(1-2):29-37. doi: 10.1016/j.molbrainres.2004.12.020.

14. Pandey GN, Ren X, Rizavi HS, et al. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacol. 2008;11(8):1047-61. doi: 10.1017/S1461145708009000.

15. Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22(8):3251-61. doi: 10.1523/JNEUROSCI.22-08-03251.2002.

16. Hoshaw BA, Malberg JE, Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res. 2005;1037(1-2):204-8. doi: 10.1016/j.brainres.2005.01.007.

17. Saarelainen T, Hendolin P, Lucas G, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23(1):349-57. doi: 10.1523/JNEUROSCI.23-01-00349.2003.

18. Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry. 2017;22(8):1085-1095. doi: 10.1038/mp.2017.61.

19. Casarotto PC, Girych M, Fred SM, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184(5):1299-1313.e19. doi: 10.1016/j.cell.2021.01.034.

20. Miranda-Lourenço C, Ribeiro-Rodrigues L, Fonseca-Gomes J, et al. Challenges of BDNF-based therapies: From common to rare diseases. Pharmacol Res. 2020;162:105281. doi: 10.1016/j.phrs.2020.105281.

21. Ochs G, Penn RD, York M, et al. A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1(3):201-6. doi: 10.1080/14660820050515197.

22. A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF Study Group (Phase III). Neurology. 1999;52(7):1427-33. doi: 10.1212/wnl.52.7.1427.

23. Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev. 2021;41(5):2746-2774. doi: 10.1002/med.21721.

24. O'Leary PD, Hughes RA. Design of potent peptide mimetics of brain-derived neurotrophic factor. J Biol Chem. 2003;278(28):25738-44. doi: 10.1074/jbc.M303209200.

25. Cerquone Perpetuini A, Mathoux J, Kennedy BN. The potential of small molecule brain-derived neurotrophic factor: mimetics to treat inherited retinal degeneration. Neural Regen Res. 2019;14(1):85-86. doi: 10.4103/1673-5374.243711.

26. Zhang JC, Yao W, Dong C, et al. Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology (Berl). 2015;232(23):4325-35. doi: 10.1007/s00213-015-4062-3.

27. Zhang MW, Zhang SF, Li ZH, Han F. 7,8-Dihydroxyflavone reverses the depressive symptoms in mouse chronic mild stress. Neurosci Lett. 2016;635:33-38. doi: 10.1016/j.neulet.2016.10.035.

28. Madjid N, Lidell V, Nordvall G, et al. Antidepressant effects of novel positive allosteric modulators of Trk-receptor mediated signaling - a potential therapeutic concept? Psychopharmacology (Berl). 2023;240(8):1789-1804. doi: 10.1007/s00213-023-06410-x.

29. Gudasheva TA, Antipova TA, Seredenin SB. Novel low-molecular-weight mimetics of the nerve growth factor. Dokl Biochem Biophys. 2010 Sep-Oct:434:262-5. (In Eng.). doi: 10.1134/S160767291005011X.

30. Gudasheva TA, Tarasiuk AV, Pomogaĭbo SV, et al. Design and synthesis of dipeptide mimetics of brain-derived neurotrophic factor. Bioorg Khim. 2012;38(3):280-90. (In Russ.). doi: 10.1134/s1068162012030053.

31. Robinson RC, Radziejewski C, Spraggon G, et al. The structures of the neurotrophin 4 homodimer and the brain-derived neurotrophic factor/neurotrophin 4 heterodimer reveal a common Trk-binding site. Protein Sci. 1999;8(12):2589-97. doi: 10.1110/ps.8.12.2589.

32. Tarasyuk AV, Sazonova NM, Kurilov DV, et al. Synthesis and in vitro neuroprotector activity of analogs of dimeric dipeptide mimetic of nerve growth factor (GK-2) with various spacer lengths. Pharmaceutical Chemistry Journal. 2019;53(6):3-10. (In Russ.). doi: 10.30906/0023-1134-2019-53-6-3-10.

33. Tarasyuk AV, Pomogaĭbo SV, Kurilov DV, Gudasheva TA. Synthesis of BDNF dimeric dipeptide mimetic GSB-106 – a potential neuroprotector drug. Pharmaceutical Chemistry Journal. 2013;47(1):21-28. (In Russ.). doi: 10.30906/0023-1134-2013-47-1-21-28.

34. Logvinov IO, Antipova TA, Gudasheva TA, et al. Neuroprotective properties of the dipeptide mimetic of brain neurotrophic factor GSB–106 in in vitro experiments. Bull Exp Biol Med. 2013;155(3):319-322. (In Russ.).

35. Zainullina LF, Vakhitova YV, Lusta AY, et al. Dimeric mimetic of BDNF loop 4 promotes survival of serum-deprived cell through TrkB-dependent apoptosis suppression. Sci Rep. 2021;11(1):7781. doi: 10.1038/s41598-021-87435-0.

36. Gudasheva TA, Logvinov IO, Antipova TA, Seredenin SB. The dipeptide mimetic of the 4th loop of the brain neurotrophic factor GSB-106 activates TrkB, Erk, and Akt and promotes the survival of neurons in vitro. Dokl Biochem Biophys. 2013;451(5):577-580. (In Russ.). doi: 10.7868/S0869565213240250.

37. Gudasheva TA, Logvinov IO, Nikolaev SV, et al. Dipeptide mimetics of different NGF and BDNF loops activate PLC-γ1. Dokl Biochem Biophys. 2020;494(1):486-490. (In Russ.). doi: 10.31857/s2686738920050133.

38. Antipova TA, Logvinov IO, Deyev IE, et al. Pharmacogenetic analysis of the interaction of the low-molecular weight BDNF mimetic dipeptide GSB-106 with TRK receptors. Dokl Biochem Biophys. 2023;511:391-394. (In Russ.). doi: 10.31857/S2686738923600218.

39. Tarasiuk AV, Mezentsev YV, Gnedenko OV, Povarnina PYu, Ivanov AS. Study of the interaction of the GSB-106 BDNF neurotrophin dipeptide mimetic with the TrkB tyrosine kinase receptor using surface plasmon resonance technology. Farmakokinetika i farmakodinamika = Pharmacokinetics and pharmacodynamics. 2022;(4):50-54. (In Russ.). doi: 10.37489/2587-7836-2022-4-50-54.

40. Seredenin SB, Voronina TA, Gudasheva TA, et al. Antidepressant effect of the original low molecular weight mimetic BDNF, dimeric dipeptide GSB-106. Acta Naturae. 2013;5(4(19)):116-120. (In Russ.).

41. Povarnina PYu, Garibova TL, Gudasheva TA, Seredenin SB. Dipeptide mimetic of brain neurotrophic factor has the properties of an antidepressant when administered orally. Acta Naturae. 2018;10(3(38)):88-91. (In Russ.).

42. Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress. 2016;6:78-93. doi: 10.1016/j.ynstr.2016.08.002.

43. Vakhitova YV, Kalinina TS, Zainullina LF, et al. Analysis of Antidepressant-like Effects and Action Mechanisms of GSB-106, a Small Molecule, Affecting the TrkB Signaling. Int J Mol Sci. 2021;22(24):13381. doi: 10.3390/ijms222413381.

44. RF Patent No.2697254 C2, 2019. (In Russ.). URL: https://patentimages.storage.googleapis.com/86/1f/3a/97015af4924703/RU2697254C1.pdf. (дата обращения 23.10.2024).

45. Hollis F, Kabbaj M. Social defeat as an animal model for depression. ILAR J. 2014;55(2):221-32. doi: 10.1093/ilar/ilu002.

46. Povarnina PYu, Tallerova AV, Mezhlumian AG, et al. Dimeric dipeptide BDNF mimetic GSB-106 exhibits antidepressant-like activity upon single oral administration in mice under social stress model conditions. Eksperimentalnaya i Klinicheskaya Farmakologiya. 2020;83(4):3-7. (In Russ.). doi: 10.30906/0869-2092-2020-83-4-3-7.

47. Gudasheva TA, Tallerova AV, Mezhlumyan AG, et al. Low-Molecular Weight BDNF Mimetic, Dimeric Dipeptide GSB-106, Reverses Depressive Symptoms in Mouse Chronic Social Defeat Stress. Biomolecules. 2021;11(2):252. doi: 10.3390/biom11020252.

48. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016 Jan;16(1):22-34. doi: 10.1038/nri.2015.5.

49. O'Connor JC, Lawson MA, André C, et al. Lipopolysaccharideinduced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry. 2009;14(5):511-22. doi: 10.1038/sj.mp.4002148.

50. Remus JL, Dantzer R. Inflammation Models of Depression in Rodents: Relevance to Psychotropic Drug Discovery. Int J Neuropsychopharmacol. 2016 Sep 21;19(9):pyw028. doi: 10.1093/ijnp/pyw028.

51. Zhang JC, Wu J, Fujita Y, et al. Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol. 2014;18(4):pyu077. doi: 10.1093/ijnp/pyu077.

52. Tallerova AV, Mezhlumyan AG, Yarkova MA, et al. Effects of original compounds GSB-106, GML-3 and GZK-111 in experimental lipopolysaccharide-induced model of anhedonia. Khimiko-Farmatsevticheskii Zhurnal. 2021;55(2):3-7. (In Russ.). doi: 10.30906/0023-1134-2021-55-2-3-7.

53. Song X, Vilares I. Assessing the relationship between the human learned helplessness depression model and anhedonia. PLoS One. 2021;16(3):e0249056. doi: 10.1371/journal.pone.0249056.

54. Garibova TL, Kraineva VA, Kotel'nikova SO, et al. Behavioral effects of the dimeric dipeptide mimetic BDNF GSB-106 in a depressive-like state in rats. Bull Exp Biol Med. 2020;169(2):252-256. (In Russ.).

55. Mezhlumyan AG, Tallerova AV, Povarnina PY, et al. Antidepressant-like Effects of BDNF and NGF Individual Loop Dipeptide Mimetics Depend on the Signal Transmission Patterns Associated with Trk. Pharmaceuticals (Basel). 2022;15(3):284. doi: 10.3390/ph15030284.

56. Yang T, Nie Z, Shu H, et al. The Role of BDNF on Neural Plasticity in Depression. Front Cell Neurosci. 2020;14:82. doi: 10.3389/fncel.2020.00082.

57. Chakrapani S, Eskander N, De Los Santos LA, et al. Neuroplasticity and the Biological Role of Brain Derived Neurotrophic Factor in the Pathophysiology and Management of Depression. Cureus. 2020;12(11):e11396. doi: 10.7759/cureus.11396.

58. Gudasheva TA, Povarnina PY, Seredenin SB. Dipeptide Mimetic of the Brain-derived Neurotrophic Factor Prevents Impairments of Neurogenesis in Stressed Mice. Bull Exp Biol Med. 2017;162(4):454-457. doi: 10.1007/s10517-017-3638-9.

59. Alekseeva SV, Sorokina AV, Volkova AV, et al. The study of the acute and chronic toxicity dipeptide mimetic of brain-derived neurotrophic factor GSB-106 finished dosage form. Farmakokinetika i farmakodinamika. 2019;2:46-50. (In Russ.). doi: 10.24411/2588-0519-2019-10047.

60. Zherdev VP, Kolyvanov GB, Litvin AA, et al. Pharmacokinetics of dipeptide mimetic BDNF GSB-106 in rats. Farmakokinetika i farmakodinamika. 2019;1:37-43. (In Russ.). doi: 10.24411/2588-0519-2019-10038.

61. Kolyvanov GB, Zherdev VP, Gribakina OG, et al. Comparative preclinical pharmacokinetics and bioavailability of the pharmaceutical form of the antidepressant GSB-106. Bull Exp Biol Med. 2019;167(5):577-580. (In Russ.).

62. Gudasheva TA, Konstantinopolsky MA, Tarasyuk AV, et al. The dipeptide mimetic of the 4th loop of the cerebral neurotrophic factor has analgesic activity. Dokl Biochem Biophys. 2019;485(3):366-369. (In Russ.).

63. Groth R, Aanonsen L. Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation-induced hyperalgesia. Pain. 2002;100(1-2):171-81. doi: 10.1016/s0304-3959(02)00264-6.

64. Marcos JL, Galleguillos D, Pelissier T, et al. Role of the spinal TrkB-NMDA receptor link in the BDNF-induced long-lasting mechanical hyperalgesia in the rat: A behavioural study. Eur J Pain. 2017;21(10):1688-1696. doi: 10.1002/ejp.1075.

65. Siuciak JA, Altar CA, Wiegand SJ, Lindsay RM. Antinociceptive effect of brain-derived neurotrophic factor and neurotrophin-3. Brain Res. 1994;633(1-2):326-30. doi: 10.1016/0006-8993(94)91556-3.

66. Merighi A, Salio C, Ghirri A, et al. BDNF as a pain modulator. Prog Neurobiol. 2008;85(3):297-317. doi: 10.1016/j.pneurobio.2008.04.004.

67. Bekinschtein P, Cammarota M, Katche C, et al. BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A. 2008;105(7):2711-6. doi: 10.1073/pnas.0711863105.

68. Bechara RG, Lyne R, Kelly ÁM. BDNF-stimulated intracellular signalling mechanisms underlie exercise-induced improvement in spatial memory in the male Wistar rat. Behav Brain Res. 2014;275:297-306. doi: 10.1016/j.bbr.2013.11.015.

69. Povarnina PYu, Nikifiriv DM, Kotelnikova SO, et al. Seredenin S.B. Nootropicactivity of brain-derived neurotrophic factor dipeptide mimetic GSB-106. Problems of biological, medical and pharmaceutical chemistry. 2020;23(1):16-22. (In Russ.). doi: 10.29296/25877313-2020-01-03.

70. Schäbitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38(7):2165-72. doi: 10.1161/STROKEAHA.106.477331.

71. Jeong CH, Kim SM, Lim JY, et al. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. Biomed Res Int. 2014;2014:129145. doi: 10.1155/2014/129145.

72. Chen HH, Zhang N, Li WY, et al. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression. Neural Regen Res. 2015;10(9):1427-32. doi: 10.4103/1673-5374.165510.

73. Luo L, Li C, Du X, et al. Effect of aerobic exercise on BDNF/proBDNF expression in the ischemic hippocampus and depression recovery of rats after stroke. Behav Brain Res. 2019;362:323-331. doi: 10.1016/j.bbr.2018.11.037.

74. El-Tamawy MS, Abd-Allah F, Ahmed SM, et al. Aerobic exercises enhance cognitive functions and brain derived neurotrophic factor in ischemic stroke patients. NeuroRehabilitation. 2014;34(1):209-13. doi: 10.3233/NRE-131020.

75. Krafft PR, Bailey EL, Lekic T, et al. Etiology of stroke and choice of models. Int J Stroke. 2012;7(5):398-406. doi: 10.1111/j.1747-4949.2012.00838.x.

76. Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 2015;9:3445-54. doi: 10.2147/DDDT.S56071.

77. Gudasheva TA, Povarnina P, Logvinov IO, et al. Mimetics of brain-derived neurotrophic factor loops 1 and 4 are active in a model of ischemic stroke in rats. Drug Des Devel Ther. 2016;10:3545-3553. doi: 10.2147/DDDT.S118768.

78. Back T, Schüler OG. The natural course of lesion development in brain ischemia. Acta Neurochir Suppl. 2004;89:55-61. doi: 10.1007/978-3-7091-0603-7_7. PMID: 15335101.

79. Gudasheva TA, Povarnina PY, Antipova TA, et al. Neuroregenerative Activity of the Dipeptide Mimetic of Brain-derived Neurotrophic Factor GSB-106 Under Experimental Ischemic Stroke. CNS Neurol Disord Drug Targets. 2021;20(10):954-962. doi: 10.2174/1871527320666210525090904.

80. Cuartero MI, García-Culebras A, Torres-López C, et al. Post-stroke Neurogenesis: Friend or Foe? Front Cell Dev Biol. 2021;9:657846. doi: 10.3389/fcell.2021.657846.

81. Woitke F, Ceanga M, Rudolph M, et al. Adult hippocampal neurogenesis poststroke: More new granule cells but aberrant morphology and impaired spatial memory. PLoS One. 2017;12(9):e0183463. doi: 10.1371/journal.pone.0183463.

82. Niv F, Keiner S, et al. Aberrant neurogenesis after stroke: a retroviral cell labeling study. Stroke. 2012;43(9):2468-75. doi: 10.1161/STROKEAHA.112.660977.

83. Cuartero MI, de la Parra J, Pérez-Ruiz A, et al. Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice. J Clin Invest. 2019;129(4):1536-1550. doi: 10.1172/JCI120412.

84. Povarnina PY, Antipova TA, Logvinov IO, et al. Сhronically Administered BDNF Dipeptide Mimetic GSB-106 Prevents the Depressive-like Behavior and Memory Impairments after Transient Middle Cerebral Artery Occlusion in Rats. Curr Pharm Des. 2023;29(2):126-132. doi: 10.2174/1381612829666230103161824.


Review

For citations:


Gudasheva T.A., Povarnina P.Yu., Tarasyuk A.V., Zherdev V.P., Durnev A.D. Dimeric dipeptide mimetics of BDNF loop 4 are potential antidepressants with novel mechanisms of action. Pharmacokinetics and Pharmacodynamics. 2024;(4):3-16. (In Russ.) https://doi.org/10.37489/2587-7836-2024-4-3-16. EDN: KGXWCF

Views: 210


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)