Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

The effectiveness of lithium ascorbate on chronic alcohol intoxication model

Abstract

The alcohol leads to deviant behavior in animals, increases aggression and irreversible degenerative changes in the liver and in the central nervous system. Lithium ascorbate in dose of 5 mg/kg, as well as higher doses (10 and 30 mg/kg), activates adaptive mechanisms normalizing behavioral responses in the tests «open field» and «elevated plus-maze». Histological analysis showed that lithium ascorbate minimize ischemic damage of neurocytes to a reversible state. In general, the use of lithium ascorbate contributes to relief of withdrawal symptoms, inhibited the occurrence of seizures and contributed to preservation of the function of the central nervous system in the model of chronic alcohol intoxication.

About the Authors

K. V. Ostrenko
FGBNU «Institute of Physiology, Biochemistry and Nutrition of Animals»
Russian Federation


O. A. Gromova
«Ivanovo State Medical Academy»
Russian Federation


I. S. Sardaryan
FFSBI HPE «Saint Petersburg State Pediatric Medical University» of the Ministry of Healthcare of the Russian Federation
Russian Federation


V. I. Demidov
«Ivanovo State Medical Academy»
Russian Federation


N. Yu. Zhidomorov
«Ivanovo State Medical Academy»
Russian Federation


I. Yu. Torshin
Moscow Institute of Physics and Technology (State University)
Russian Federation


A. V. Pronin
«Ivanovo State Medical Academy»
Russian Federation


V. A. Krivonogov
«Ivanovo State Medical Academy»
Russian Federation


Yu. V. Karpunina
«Ivanovo State Medical Academy»
Russian Federation


References

1. Myers R.D., McMillen B.A., Adell A. Neurotransmitter and neuromodulatory mechanisms involved in alcohol abuse and alcoholism: Epitome of cerebral complexity. Neurochem. Int. 1995; 26: 337.

2. Darcq E., Warnault V., Phamluong K., Besserer G.M., Liu F., Ron D. MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption. Mol. Psychiatry. 2014 Oct 21.

3. Chang C.M., Wu C.S, Huang Y.W., Chau Y.L., Tsai H.J. Utilization of Psychopharmacological Treatment Among Patients With N ewly Diagnosed Bipolar Disorder From 2001 to 2010. J Clin Psychopharmacol. 2016; 36 (1): 32-44 doi.

4. Zawalich W.S., Zawalich K.C., Rasmussen H. Interactions between lithium, inositol and mono-oleoylglycerol in the regulation of insulin secretion from isolated perifused rat islets. Biochem J. 1989; 262 (2): 557-561.

5. Diaz-Sastre C., Perez-Rodriguez M.M., Cebollada A., Ruiz J.S., Baca-Garcia E., de Leon J. Cholesterol and lithium levels were correlated but serum HDL and total cholesterol levels were not associated with current mood state in bipolar patients. J Clin Psychiatry. 2005; 66 (3): 399-400.

6. Koda L.Y., Shoemaker W.J., Baetge G., Bloom F.E. Lithium treatment decreases blood pressure in genetically hypertensive rats. Eur J Pharmacol. 1981; 76 (4): 411-415.

7. Focosi D., Azzara A., Kast R.E., Carulli G., Petrini M. Lithium and hematology: established and proposed uses. J Leukoc Biol. 2009; 85 (1): 20-8 doi.

8. Phelan K.M., Mosholder A.D., Lu S. Lithium interaction with the cyclooxygenase 2 inhibitors rofecoxib and celecoxib and other nonsteroidal anti-inflammatory drugs. J Clin Psychiatry. 2003; 64 (11): 1328-1334.

9. Hillert M.H., Imran I., Zimmermann M., Lau H., Weinfurter S., Klein J. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats. J Neurochem. 2014; 131 (1): 42-52 doi.

10. Stengaard-Pedersen K., Schou M. In vitro and in vivo inhibition by lithium of enkephalin binding to opiate receptors in rat brain. Neuro-pharmacology. 1982; 21 (8): 817-823.

11. Ebstein R.P., Hermoni M., Belmaker R.H. The effect of lithium on noradrenaline-induced cyclic AMP accumulation in rat brain: inhibition after chronic treatment and absence of supersensitivity. J Pharmacol Exp Ther. 1980; 213 (1): 161-167.

12. Basselin M., Chang L., Bell J.M., Rapoport S.I. Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacol 2005; 30 (6):1064-1075.

13. Castro L., Athanazio R., Barbetta M., Ramos A.C., Angelo A.L., Campos I., Varjao B., Ferreira H., Fregoneze J., de Castro e Silva E. Central 5-HT2B/2C and 5-HT3 receptor stimulation decreases salt intake in sodium-depleted rats. Brain Res. 2003; 981 (1-2):151-159.

14. Basselin M., Chang L., Bell J.M., Rapoport S.I. Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacol. 2006; 31 (8): 1659-74 Epub 2005 N.

15. Marx C.E., Yuan P., Kilts J.D., Madison R.D., Shampine L.J., Manji H.K. Neuroactive steroids, mood stabilizers, and neuroplasticity: alterations following lithium and changes in Bcl-2 knockout mice. Int J Neuropsychopharmacol 2008; 11 (4): 547-52 doi.

16. Торшин И.Ю., Сардарян И.С., Громова О.А., Расташанский В.А., Федотова Л.Э. Хемореактомное моделирование аскорбата лития. Фармакокинетика и фармакодинамика, 2016; 3: 47-58.

17. Mihara M., Uchiyama M. Biochemistry. N.Y.: Med, 1980; 23: 302.

18. Бочкарева А.В., Зимин Ю.В. Изменение активности алкоголь-дегидрогеназы клеток печени крыс при действии этанола и гепарина. Вестник Нижегородского университета им. Н.И. Лобачевского, 2010; 2 (2): 490-493.

19. Шабанов П.Д., Калишевич С.Ю. Биология алкоголизма. СПб.: 1998; 272.


Review

For citations:


Ostrenko K.V., Gromova O.A., Sardaryan I.S., Demidov V.I., Zhidomorov N.Yu., Torshin I.Yu., Pronin A.V., Krivonogov V.A., Karpunina Yu.V. The effectiveness of lithium ascorbate on chronic alcohol intoxication model. Pharmacokinetics and Pharmacodynamics. 2017;(1):11-21. (In Russ.)

Views: 3338


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)