Method for quantitative analysis of the marker substrate ABCB1-protein fexofenadine in Caco-2 cell lysate
https://doi.org/10.37489/2587-7836-2023-2-60-68
Abstract
One way to analyze the activity of the ABCB1 protein is to assess the accumulation of its substrate fexofenadine (F.) inside the test cells. The goal is to develop and validate a method for the quantitative analysis of F. in Caco-2 cell lysate using HPLC-MS/MS. Materials and methods. Caco-2 cell lysate was used as a matrix. The analysis was performed on an "Ultimate 3000" chromatograph with a TSQ Fortis triple quadrupole mass detector, a UCT Selectra C18 4.6 mm*100 mm 5 µm column in a gradient elution mode. The mobile phase rate was 0.3 ml/min, the sample volume was 20 µl, the ionization mode was positive, and the internal standard was amantadine (ng/ml). Sample preparation — precipitation of cell lysate protein with acetonitrile. The method was validated for the following parameters: selectivity, linearity, lower limit of quantitation (LLOQ), correctness, precision, sample transfer and sample stability. Results. Chromatograms of the blank lysate of Caco-2 cells showed no peaks with retention times characteristic of F. (5.70 min) and amantadine (3.58 min). NPKO F. was 0.5 ng/ml. F.'s transfer did not exceed 20% of NPKO, and amantadine — 5%. Based on the results of the analysis of three series of calibration standards (0.5; 1; 1.5; 5; 10; 25; 40; 50 ng/ml), linear regression equations were obtained, the correlation coefficients exceeded 0.99. Accuracy and precision were assessed within and between cycles by analyzing F. solutions in the matrix (0.5; 1.5; 25 and 40 ng/ml) within three cycles. The parameters did not exceed 20% for LLPO and 15% for other points. The stability of F. solutions (1.5 and 40 ng/ml) in the lysate was analyzed during storage at room temperature, after 3-fold freezing-thawing, storage at -80 °C for 60 days, after sample preparation and being in the autosampler for 24 hours. The accuracy was within 15% of the nominal values. Conclusions. A method for the quantitative determination of F. in Caco-2 cell lysate using HPLC-MS/MS has been developed and validated.
About the Authors
M. A. KopanitsaRussian Federation
Maria A. Kopanitsa - Assistant of the Department of Pharmaceutical chemistry
Ryazan
Yu. S. Tranova
Russian Federation
Yulia S. Tranova - Assistant of the Department of Pharmaceutical chemistry
Ryazan
I. V. Chernykh
Russian Federation
Ivan V. Chernykh - Head of the Department of Pharmaceutical Chemistry, Dr. Sci. (Biol.), Associate Professor
Ryazan
A. V. Shchulkin
Russian Federation
Alexey V. Shchulkin - Professor of the Department of Pharmacology, Dr. Sci. (Med), Associate Professor
Ryazan
P. Yu. Mylnikov
Russian Federation
Pavel Yu. Mylnikov - Assistant of the Department of Pharmacology, Cand. Sci. (Biol.)
Ryazan
O. V. Kalinkina
Russian Federation
Oksana V. Kalinkina - Senior Lecturer, Department of Pharmaceutical Chemistry
Ryazan
E. N. Yakusheva
Russian Federation
Elena N. Yakusheva - Head of the Department of Pharmacology, Dr. Sci. (Med), Professor
Ryazan
References
1. Spudich A, Kilic E, Xing H, et al. Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. Nat Neurosci. 2006 Apr;9(4):487–8. DOI: 10.1038/nn1676.
2. Черных И.В., Щулькин А.В., Якушева Е.Н., Попова Н.М. Роль гликопротеина-Р в неврологии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2017;117(1):67–71. [Chernykh IV, Shchulkin AV, Yakusheva EN, Popova NM. A role of P-glycoprotein in neurology. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2017;117(1):67–71. (In Russ).]. DOI: 10.17116/jnevro20171171167-71.
3. Сычев Д.А., Кукес В.Г., Каркищенко Н.Н. Методические рекомендации по изучению биотрансформации и транспортеров новых лекарственных средств: дизайн исследований, анализ данных: руководство по экспертизе лекарственных средств. М.: Гриф и К; 2014. [Sychev DA, Kukes VG, Karkishhenko NN. Metodicheskie rekomendacii po izucheniyu biotransformacii i transporterov novy`x lekarstvenny`x sredstv: dizajn issledovanij, analiz danny`x: rukovodstvo po e`kspertize lekarstvenny`x sredstv. Moscow: Grif i K; 2014. (In Russ).].
4. Clinical Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Clinical Pharmacology. (2020).
5. In Vitro Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Clinical Pharmacology. (2020).
6. Sambuy Y, De Angelis I, Ranaldi G, et al. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 2005 Jan;21(1):1-26. DOI: 10.1007/s10565-005-0085-6.
7. Щулькин А.В., Транова Ю.С., Абаленихина Ю.В., и др. Клетки линии Сaco-2 как модель для изучения абсорбции лекарственных веществ. Экспериментальная и клиническая гастроэнтерология. 2022;(10):63–69. [Shchulkin AV, Tranova YuS, Abalenikhina YuV, et al. Cells of the Caco-2 line as a model for studying the absorption of medicinal substances. Experimental and Clinical Gastroenterology. 2022;(10):63–69. (In Russ).]. DOI: 10.31146/1682-8658-ecg-206-10-63-69.
8. Pilařová V, Gottvald T, Svoboda P, et al. Development and optimization of ultra-high performance supercritical fluid chromatography mass spectrometry method for high-throughput determination of tocopherols and tocotrienols in human serum. Anal Chim Acta. 2016 Aug 31;934:252–65. DOI: 10.1016/j.aca.2016.06.008.
9. Oliveira DC, Weigch A, Rolim CM. Simple and reliable HPLC analysis of fexofenadine hydrochloride in tablets and its application to dissolution studies. Pharmazie. 2007 Feb;62(2):96–100.
10. Мыльников П.Ю., Черных И.В., Щулькин А.В., Попова Н.М., Якушева Е.Н. ВЭЖХ-методика количественного анализа фексофенадина в печени кроликов. Фармация и фармакология. 2020;8(1):40–47. [Mylnikov PYu, Chernykh IV, Shchulkin AV, Popova NM, Yakusheva EN. HPLC methods of fexofenadine quantitative analysis in rabbits’ liver. Pharmacy & Pharmacology. 2020;8(1):40–47. (In Russ).]. DOI: 10.19163/2307-9266-2020-8-1-40-47.
11. Якушева Е.Н., Черных И.В., Щулькин А.В., Гацанога М.В. Разработка ВЭЖХ-методики количественного анализа фексофенадина в плазме крови. Фармакокинетика и Фармакодинамика. 2017;(2):35–38. [Yakusheva EN, Chernykh IV, Shulkin AV, Gatsanoga MV. Design of HPLC methods of fexofenadine quantitative analysis in blood plasma. Pharmacokinetics and Pharmacodynamics. 2017;(2):35–38. (In Russ).].
12. İşleyen EAÖ, Özden T, Özilhan S, Toptan S. Quantitative determination of fexofenadine in human plasma by HPLC-MS. Chromatographia. 2007;(66):109–113. DOI: 10.1365/s10337-007-0267-x.
13. Zhao R, Kalvass JC, Yanni SB, Bridges AS, Pollack GM. Fexofenadine brain exposure and the influence of blood-brain barrier P-glycoprotein after fexofenadine and terfenadine administration. Drug Metab Dispos. 2009 Mar;37(3):529–35. DOI: 10.1124/dmd.107.019893.
14. Flynn CA, Alnouti Y, Reed GA. Quantification of the transporter substrate fexofenadine in cell lysates by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2011 Aug 30;25(16):2361–6. DOI: 10.1002/rcm.5111.
Review
For citations:
Kopanitsa M.A., Tranova Yu.S., Chernykh I.V., Shchulkin A.V., Mylnikov P.Yu., Kalinkina O.V., Yakusheva E.N. Method for quantitative analysis of the marker substrate ABCB1-protein fexofenadine in Caco-2 cell lysate. Pharmacokinetics and Pharmacodynamics. 2023;(2):60-68. (In Russ.) https://doi.org/10.37489/2587-7836-2023-2-60-68