Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Effects of pantogam active on behavior and neuroreceptor spectrum in mouse model of attention deficit disorder

https://doi.org/10.37489/2587-7836-2022-2-23-30

Abstract

Effect of Pantogam active subchronic administration (200 mg/kg/day, i.p.) on the behavior of outbred CD-1 mice in the experimental model of attention deficit disorder was studied in the "closed enriched cross maze" test. Pantogam active corrected the initial attention deficit of ED-low rodents subpopulation without changing other parameters of their behavior. Analysis of the results of radioligand binding revealed statistically significant differences in the distribution of D2 and GABAB-receptors in the brain structures of outbred CD-1 mice subpopulations. In the prefrontal cortex (PFC) of ED-low control group with reduced attention level, compared with ED-high control, density of D2 receptors was higher by 18 %, while density of GABAB receptors was lower by 35 %. Administration of pantogam active resulted in decreasing of D2 receptors density by 23 % and increasing of this indicator by 42 % for GABAB- receptors in the PFC of ED-low animals, respectively. Thus, this studied drug has potential efficacy in treating attention deficit in experimental animals, normalizes behavior and possible molecular markers of this pathology.

About the Authors

N. A. Sukhorukova
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Sukhorukova Nataliya A., Junior researcher, Laboratory of radioisotope research methods. SPIN code: 2656-4174

Moscow



E. V. Vasileva
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Vasileva Ekaterina V., Senior researcher, Laboratory of radioisotope research methods. SPIN code: 1054-4872

Moscow



E. A. Kondrakhin
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Kondrakhin Evgenii A., Senior researcher, Laboratory of radioisotope research methods. SPIN code: 3006-3485

Moscow



R. M. Salimov
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Salimov Ramiz M., Dr. Sci. Biological, Lead specialist of the Laboratory of radioisotope research methods

Moscow



G. I. Kovalev
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Kovalev Georgy I., Dr. Sci. (Med.), professor, Head of the Laboratory of radioisotope research methods. SPIN code: 8461-8814

Moscow



References

1. Kovalev GI, Sukhorukova NA, Vasil’eva EV et al. Analysis of behavioral and neuroreceptor effects of atomoxetine and phenibut in CD-1 subpopulations diverging in sustained attention. Eksperimental'naia i Klinicheskaia Farmakologiia. 2021;84(4):3–11. (In Russ). DOI: 10.30906/0869-2092-2021-84-4-3-11.

2. Kovalev GI, Sukhorukova NA, Kondrakhin EA et al. Influence of piracetame on the brain receptor systems in CD-1 mice with different attention stability phenotype. Pharmaceutical Chemistry Journal. 2021;55(8):10–14 (In Russ). DOI: 10.30906/0023-1134-2021-55-8-10-14.

3. Kovalev GI, Sukhorukova NA, Kondrakhin EA et al., Subchronic administration of semax increases attention stability in CD-1 mice via modulation D<sub>2</sub>-dopamine receptors in the prefrontal cortex. Eksperimental'naia i Klinicheskaia Farmakologiia. 2021;84(6):3–10. (In Russ). DOI: 10.30906/0869-2092-2021-84-6-3-10.

4. Pantogam i Pantogam active. Klinicheskoe primenenie i fundamental’niye issledovaniya. Ed by Kopelevich VM. Moscow: Triada-farm; 2009. (In Russ).

5. Taranushenko TE, Kustova TV, Salmina AB. Syndrome of deficiency of attention and hyperactivity in children:(review). Rossijskij pediatricheskij zhurnal. 2013;4:41–47 (In Russ).

6. Christman AK, Fermo JD, Markowitz JS. Atomoxetine, a novel treatment for attention-deficit–hyperactivity disorder. Pharmacotherapy, 2004;24(8):1020–1036. DOI: 10.1592/phco.24.11.1020.36146.

7. Kovalev GI, Sukhorukova NA,Vasil’eva EV et al. Influence of pantogam and atomoxetine on attention stability and distribution of dopamine D<sub>2</sub> and GABA<sub>В</sub> receptors in the attention deficit mouse model. Biomeditsinskaya khimiya. 2021;67(5):402–410. (In Russ). DOI: 10.18097/PBMC20216705402.

8. Kovalev GI, Salimov RM, Sukhorukova NA et al. Neuroreceptor profile and behavior of CD-1 mice subpopulations with different attention stability. Neurochemical Journal. 2020;37(1):15–23. (In Russ). DOI: 10.1134/S1819712420010146.

9. Glowinski J, Iversen LL. Regional studies of catecholamines in the rat brain. I. The disposition of [<sup>3</sup>H]norepinephrine, [<sup>3</sup>H]dopamine and [<sup>3</sup>H] DOPA in various regions of the brain. J Neurochem. 1966;13(8):655–669. DOI: 10.1111/j.1471-4159.1966.tb09873.x.

10. Breese CR, Marks MJ, Logel J et al. Effect of smoking history on [<sup>3</sup>H]nicotine binding in human postmortem brain. J Pharmacol Exp Ther. 1997;282(1):7–13.

11. Sun W. In vivo evidence for dopamine-mediated internalization of D<sub>2</sub>-receptors after amphetamine: differential findings with [<sup>3</sup>H]Raclopride versus [<sup>3</sup>H]Spiperone. Mol Pharmacol. 2003;63(2):456–462. DOI: 10.1124/mol.63.2.456.

12. Bowery NG. [<sup>3</sup>H](-)Baclofen: an improved ligand for GABA<sub>В</sub> sites. Neuropharmacology. 1985;24(3):207–210. DOI: 10.1016/0028-3908(85)90075-9.

13. Szekely AM, Barbaccia ML, Costa E. Effect of a protracted antidepressant treatment on signal transduction and [<sup>3</sup>H](-)-baclofen binding at GABA<sub>В</sub> receptors. J Pharmacol Exp Ther. 1987;243(1):155–159.

14. Zhou LM, Gu ZQ, Costa AM, et al. (2S,4R)-4-Methylglutamic Acid (SYM 2081)- a selective, high-affinity ligand for kainite receptors. J Pharmacol Exp Ther. 1997;280(1):422–427.

15. LePage KT, Ishmael JE, Low CM et al. Differintial binding properties of [G<sup>3</sup>H] dextorfan and [G-<sup>3</sup>H]MK801 in heterologously expressed NMDA receptors. Neuropharmacology. 2005;49(1):1–16. DOI: 10.1016/j.neuropharm.2005.01.029.

16. Waterborg JH, Matthews HR. The Lowry method for protein quantitation. Methods Mol Biol.1984;1:1–3. DOI: 10.1385/0-89603-062-8:1.

17. Kovalev GI, Firstova Yu Yu, Abaimov DA et al. Pantogam and pantogam active: qualitative and quantitative features of the interaction with neurotransmitter receptors in vitro. Zhurnal nevrologii i psihiatrii im. S.S.Korsakova. 2012;112(3):44-48 (In Russ).

18. Zhang Y-M, Chohnan Sh, Virga KG et al. Chemical knockout of pantothenate kinase reveals the metabolic and genetic programs responsible for hepatic coenzyme A homeostasis. Cell Chemical Biology. 2007;14(3): 291–302. DOI: 10.1016/j.chembiol.2007.01.013.


Review

For citations:


Sukhorukova N.A., Vasileva E.V., Kondrakhin E.A., Salimov R.M., Kovalev G.I. Effects of pantogam active on behavior and neuroreceptor spectrum in mouse model of attention deficit disorder. Pharmacokinetics and Pharmacodynamics. 2022;(2):23-30. (In Russ.) https://doi.org/10.37489/2587-7836-2022-2-23-30

Views: 544


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)