Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Effect of phenibut and atomoxetine on the biosynthesis and metabolism of dopamine and serotonin in the brain of C57BL/6 mice

https://doi.org/10.37489/2587-7836-2021-3-20-25

Abstract

The effect of intraperitoneal administration of the nootropic drug phenibut (70 mg/kg) and atomoxetine hydrochloride (3 mg/kg) on the neurochemical parameters of dopaminergic and serotonergic systems in the brain structures of C57BL/6 mice was studied by HPLC/ED. It was found that under in vivo blockade of L-aromatic amino acid decarboxylase (DAAA), both drugs in the selected doses did not affect directly on biosynthesis processes of both dopamine and serotonin in the prefrontal cortex and striatum of rodents. The observed effects of phenybut and atomoxetine hydrochloride, in comparison with the used D2 receptor ligands quinpirole (0.1 mg/kg) and sulpiride (25 mg/kg), suggest the absence of direct participation of dopamine autoreceptors regulating the functional activity of dopaminergic synapses.

About the Authors

N. N. Sukhorukova
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Sukhorukova Natalia A. - Junior researcher, Laboratory of Radioisotope Research Methods
SPIN code: 2656-4174

Moscow



V. S. Kudrin
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Kudrin Vladimir S. - PhD in Medicine, Head of the Laboratory of Neurochemical Pharmacology
SPIN code: 3986-3262

Moscow



V. B. Narkevich
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Narkevich Victor B. - PhD in Medicine, Senior Research Scientist, Laboratory of Neurochemical Pharmacology

Moscow



G. I. Kovalev
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Kovalev Georgy I. - Dr. Sci. (Med.), professor, Head of the laboratory
of radioisotope research methods
SPIN code: 8461-8814

Moscow



References

1. Lapin I., Phenibut (beta-phenyl-GABA): a tranquilizer and nootropic drug. CNS Drug Rev. 2001; 7(4):471-481. DOI:10.1111/j.1527-3458.2001.tb00211.x

2. Zavadenko N. N., Yu S.N. Attention deficit disorder: Study of motor control, memory and experience with nootropics, Eur J Paediatr Neurol. 1999;3(6):A86. DOI:10.1016/S1090-3798(99)91216-3

3. Kovalev GI, Sukhorukova NA, Vasileva EV et al. Analysis of behavioral and neuroreceptor effects of atomoxetine and phenibut in CD-1 mice subpopulations diverging in sustained attention. Eksperimental'naia i Klinicheskaia Farmakologiia, 2021; 84(4):3-11. DOI:10.30906/0869-2092-2021-84-4-3-11.

4. Borodkina LE, Kudrin VS, Klodt PM. et al., Effect of phenibut on the content of monoamines, their metabolites, and neurotransmitter amino acids in rat brain structures. Eksperimental'naia i Klinicheskaia Farmakologiia, 2009; 72(1):60-63. DOI:10.30906/0869-2092-2009-72-1-60-63

5. Kovalev GI, Salimov RM, Sukhorukova NA et al. Neuroreceptor Profile and Behavior of CD-1 Mice Subpopulations with Different Attention Stability. Neurochemical Journal. 2020;37(1):1-9. DOI:10.1134/S1819712420010146.

6. Romanelli RJ, Williams JT, Neve KA, Dopamine Receptor Signalling: Intracellular Pathways to Behavior. In: Neve KA, editor. The Dopamine Receptors. Portland OR: Humana Press; 2010. p.137-174.

7. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011;63(1):182-217. DOI:10.1124/pr.110.002642

8. Kudrin VS, Nadorova AV, Narkevich VB et al. Analysis of the behavioral and neurochemical effects of hemantane on the dynamics of the ethanol-induced hyperlocomotor response in DBA/2 mice. Neurochemical Journal. 2018;35(1):62-69. DOI:10.7868/S1027813318010065

9. Glowinski J, Iversen LL. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem. 1966; 13(8): 655-669. DOI:10.1111/j.1471-4159.1966.tb09873.x

10. Carlsson A, Kehr W, Lindqvist M. Agonist-antagonist interaction on dopamine receptors in brain, as reflected in the rates of tyrosine and tryptophan hydroxylation. J Neural Transm. 1977; 40(2):99-113. DOI:10.1007/BF01250562.

11. Abaimov DA, Zimin IA, Kudrin VS et al. Effects of antiparkinsonian drug hemantane on the level of biogenic monoamines in brain structures of C57BL/6 mice. Eksperimental'naia i Klinicheskaia Farmakologiia. 2009;72(1): 64-67. DOI:10.30906/0869-2092-2009-72-1-64-67

12. Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience. 2014;282:13-22. DOI:10.1016/j.neuroscience.2014.01.025

13. Alexander SPH, Christopoulos A, Davenport AP et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. Br J Pharmacol. 2019; 176 Suppl 1:S21-141. DOI:10.1111/bph.14748

14. Bymaster FP, Katner JS, Nelson DL et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002; 27(5):699-711. DOI:10.1016/S0893-133X


Supplementary files

Review

For citations:


Sukhorukova N.N., Kudrin V.S., Narkevich V.B., Kovalev G.I. Effect of phenibut and atomoxetine on the biosynthesis and metabolism of dopamine and serotonin in the brain of C57BL/6 mice. Pharmacokinetics and Pharmacodynamics. 2021;(3):20-25. (In Russ.) https://doi.org/10.37489/2587-7836-2021-3-20-25

Views: 2788


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)