Statistical processing of pharmacological experiments results measured in ordinal and quantitative scales, if it is impossible to analyze using parametric methods
https://doi.org/10.37489/2587-7836-2020-3-3-24
Abstract
The article discusses descriptive statistics of data measured in ordinal and quantitative scales, and criteria for determining the statistical significance of differences between samples when it is impossible to analyze using parametric methods. Special attention is paid to the problem of multiple comparisons of this type of data. For each method, examples of processing data obtained in pharmacological studies are given.
About the Author
I. B. TsorinRussian Federation
Tsorin Iosif B., D. Sci. in Biology, Leading researcher of laboratory of pharmacological screening
SPIN code: 4015-3025
References
1. Halafian A.A. STATISTICA 6. Matematicheskaya statistika s elementami teorii veroyatnostej. Moscow: Binom; 2010. (In Russ)..
2. Petrie A, Sabin C. Medical statistics at a glance. Third edition. – Wiley-Blackwell. AJohn Wiley & Sons,Ltd., Publication. 2009..
3. Hollander MH, Wolfe DA.Nonparametric statistical methods. John Wiley and Sons / New York, London, Sydney, Toronto. 1973..
4. Lakin GV. Biometriya. Moscow: Vysshaya shkola; 1990. (In Russ)..
5. Glantz St.A. Primer of biostatistics. Fouth Edition. McGraw-Hill:Health Professions Division. New York; 1994..
6. Runyon RP. Nonparametric statistics. Acontemporary approach: Addison-Wesley Pablishing Company; 1977..
7. J. Likes, J. Laga. Zakladni Staticke Tabulky. Praha: 1978.
8. Yanko Ya. Mathematic-statistic tables. Praha;1958.
9. Iman RL. An approximation to the exact distribution of the wilcocxonmann-whitney rank sum test statistic. Communications in Statistics – Theory and Methods.1976;5(7):587-598.
10. Anohina IP, Kolik LG. Methodological foundations of the search for pharmacological agents for the alcoholism treatment and evaluating their effectiveness. In book: Guidelines for conducting preclinical research of drugs. Pt. I. 2013. Moscow: FSBI “SCEEMP”; p. 310–333. (In Russ).].
11. Hodges JL, Lehmann EL. Estimates of location based on ranks tests. Ann. Math. Statist. 1963;34:598-611.
12. Moses LE. One sample limits of some two-sample rank tests. J. Amer. Statist. Ass.1964;59:645-651.
13. Tsorin IB. Statistical processing of qualitative (nominal) data in pharmacological research. Farmakokinetika i farmakodinamika.2019;(3):3–18. (In Russ).]. DOI: 10.24411/2587-7836-2019-10050
14. Bolshev LN, Smirnova HV. Tablicy matematicheskoj statistiki. Izdanie 3-e. Moscow: «Nauka»; 1983. (In Russ).].
15. Iman RL. Use of a t-statistic as an approximation to the exact distribution of the wilcocxon signed ranks test statistic. Commnications in Statistics. 1974;3(8): 795-806.
16. Iman RL, Davenport JM. New approximation to the exact distribution of the Kruskal-Wallis test statistic. Communications in Statistics – Theory and Methods.1976;5(14):1335–1348.
17. Kobzar AI. Applied mathematical statistics. Moscow: Fizmatlit; 2006. (In Russ).
18. Dannet CW. New tables for multiple comparisons with a control. Biometrics.1964;20:482–4491.
19. Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6:241–252.
20. Iman RL, Davenport JM. Approximation of the critical region of the fbietkan statistic. Communications in Statistics – Theory and Methods. 1980;9(6):571–595.
Review
For citations:
Tsorin I.B. Statistical processing of pharmacological experiments results measured in ordinal and quantitative scales, if it is impossible to analyze using parametric methods. Pharmacokinetics and Pharmacodynamics. 2020;(3):3-24. (In Russ.) https://doi.org/10.37489/2587-7836-2020-3-3-24