Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Screening study of nerve growth factor's and brain-derived neurotrophic factor's mimetics effects at the experimental depression model

https://doi.org/10.37489/2587-7836-2020-1-11-17

Abstract

At the Zakusov Institute of Pharmacology designed and synthesized dimeric dipeptide mimetics of the 1st (GK-6) and 4th (GK-2) nerve growth factor loops, 1st (GSB-214), 2nd (GTS-201) and 4th (GSB -106, GSB-106Ac) brain-derived neurotrophic factor loops. Antidepressant activity of GSB-106 has already been established by oral and intraperitoneal administration in 0.1-5.0 mg/kg doses. Newly synthesized mimetics were studied in comparison with GSB-106 for antidepressant-like activity in the forced swim test on male Balb/c mice with a single intraperitoneal administration. It was found that only mimetic of the fourth brain-derived neurotrophic factor loop GSB-106Ac, varied from GSB-106 by replace monosuccinyl fragment to acetyl, has antidepressant activity in doses of 1.0 mg / kg and 5.0 mg / kg.

About the Authors

A. G. Mezhlumyan
FSBI Zakusov Institute of Pharmacology
Russian Federation

Mezhlumyan Armen -- Junior researcher of the laboratory of peptide bioregulators of medicinal chemistry department, SPIN code: 7888-2236

Moscow



A. V. Tallerova
FSBI Zakusov Institute of Pharmacology
Russian Federation

Tallerova Anna - PhD in Biology, Senior research scientist of laboratory of peptide bioregulators of medicinal chemistry department, SPIN code: 2826-2687.

Moscow


P. Yu. Povarnina
FSBI Zakusov Institute of Pharmacology
Russian Federation

Povarnina Polina - PhD in Biology, Senior research scientist of laboratory of peptide bioregulators of medicinal chemistry department, SPIN code: 5498-6724.

Moscow



N. M. Sazonova
FSBI Zakusov Institute of Pharmacology
Russian Federation

Sazonova Nellya - PhD Chemistry, Senior research scientist of laboratory of peptide bioregulators of medicinal chemistry department, SPIN code: 8835-7887.

Moscow



A. V. Tarasiuk
FSBI Zakusov Institute of Pharmacology
Russian Federation

Tarasiuk Aleksey - Researcher of laboratory of peptide bioregulators of medicinal chemistry department, SPIN code: 9670-2415.

Moscow



T. A. Gudasheva
FSBI Zakusov Institute of Pharmacology
Russian Federation

Gudasheva Tatiana - D.Sci. in Biology, professor, corresponding member of the RAS, Head of medicinal chemistry department, SPIN code: 4970-0006.

Moscow



References

1. Chen Y Lin P, Tu K. Significantly lower nerve growth factor levels in patients with major depressive disorder than in healthy subjects: a metaanalysis and systematic review. Neuropsychiatr. Dis. Treat. 2015;11:925-933. DOI: 10.2147/ndt.s81432

2. Mondal AC, Fatima M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: role of antidepressants treatment. Int. J. Neurosci. 2019;129(3):283-296. DOI: 10.1080/00207454.2018.1527328

3. Banerjee R, Ghosh A, Ghosh B. Bhattacharyya S. Decreased mRNA and Protein Expression of BDNF, NGF and their Receptors in the Hippocampus from Suicide: An Analysis in Human Postmortem Brain. Clin. Med. Insights Pathol. 2013;6:1-11. DOI: 10.4137/cpath.s12530

4. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-Like Effect of Brain-derived Neurotrophic Factor (BDNF). Pharmacol. Biochem. Behav. 1997;56(1):131-137. DOI: 10.1016/s0091-3057(96)00169-4

5. Overstreet DH, Fredericks K, Knapp D, et al. Nerve growth factor (NGF) has novel antidepressant-like properties in rats. Pharmacol. Biochem. Behav. 2010;94(4):553-560. DOI: 10.1016/j.pbb.2009.11.010

6. Gudasheva TA, Antipova TA, Seredenin SB. Novel low-molecular-weight mimetics of the nerve growth factor. Doklady Biochemistry and Biophysics. 2010;434(4):549—552. (In Russ). DOI: 10.1134/s160767291005011x

7. Tarasyuk AV, Gudasheva TA, Sazonova NM, et al. Study of structure-activity relationship among similar analogues of GSB-106, a dipeptide mimetic of a brain-derived neurotrophic factor. Russian Journal of Bioorganic Chemistry. 2014;40(2):142— 156. (In Russ). DOI: 10.7868/S0132342314020134

8. Sazonova NM, Tarasyuk AV, Shumskii AN, et al. Synthesis and In Vitro Neuroprotector Activity of Diastereoisomers of a Dimeric Dipeptide Mimetic of Nerve Growth Factor GK-2. Pharmaceutical Chemistry Journal. 2018;52(8):25—31. (In Russ). DOI: 10.30906/0023-1134-2018-52-8-25-31

9. Sazonova NM, Tarasyuk AV, Kurilov DV, et. al. Synthesis of GK-2, a Dimeric Dipeptide Nerve Growth Factor Mimetic and Potential Neuroprotective Agent. Pharmaceutical Chemistry Journal. 2015;49(7):10-19. (In Russ). DOI: 10.1007/s11094-015-1301-1

10. Gudasheva tA, Logvinov IO, Antipova TA, Seredenin SB. Analysis of dependence of antidepressant properties of TrkB receptor ligands on MAP-kinase pathway activation. Doklady Biochemistry and Biophysics. 2015;460(3):346-348. (In Russ). DOI: 10.7868/S0869565215030251

11. Gudasheva TA, Tarasiuk AV, Sazonova NM, et al. A novel dimeric dipeptide mimetic of the BDNF selectively activates the MAPK-Erk signaling pathway. Doklady Biochemistry and Biophysics. 2017;476(1):108-112. (In Russ). DOI: 10.7868/S0869565217250235

12. Seredenin SB, Gudasheva TA. The development of a pharmacologically active low-molecular mimetic of the nerve growth factor. Zhurnal nevrologii ipsikhiatrii im. S.S. Korsakova. 2015;115(6):63—70. (In Russ). DOI: 10.17116/jnevro20151156163-70

13. Gudasheva TA, Povarnina PY, Antipova TA, et al. Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction. J. Biomed. Sci. 2015;22(1):1-10. DOI: 10.1186/s12929-015-0198-z

14. Gudasheva TA, Tarasyuk AV, Pomogaibo SV, et al. Design and synthesis of dipeptide mimetics of the brain-derived neurotrophic factor. Russian Journal of Bioorganic Chemistry. 2012;38(3):280—290. (In Russ). DOI: 10.1134/S1068162012030053

15. Seredenin SB, Voronina TA, Gudasheva TA, et. al. Antidepressant effect of dimeric dipeptide GSB-106, an original low-molecular-weight mimetic of BDNF. Acta Naturae. 2013;5(4 Pt 19):116—120. (In Russ). DOI: 10.32607/20758251-2013-5-4-105-109

16. Can A, Dao DT, Arad M, et al. The mouse forced swim test. J. Vis. Exp. 2012;(59):1-5. DOI: 10.3791/3638

17. Ostrovskaya RU, Yagubova SS, Gudasheva TA, Seredenin SB. Low-Molecular-Weight NGF Mimetic Corrects the Cognitive Deficit and Depression-like Behavior in Experimental Diabetes. Acta Naturae. 2017;9(2 Pt 33):100—108. (In Russ). DOI: 10.32607/20758251-2017-9-2-94-102

18. Povarnina PY, Gudasheva TA, Vorontsova ON, et al. Antiparkinsonian properties of a nerve growth factor dipeptide mimetic GK-2 in vivo experiments. Bulletin of Experimental Biology and Medicine. 2011;151(6):634—637. (In Russ). DOI: 10.1007/s10517-011-1417-6

19. Gupta G, Jia Jia T, Woon LY, et al. Pharmacological Evaluation of Antidepressant-Like Effect of Genistein and Its Combination with Amitriptyline: An Acute and Chronic Study. Adv. Pharmacol. Sci. 2015;2015:1-6. DOI: 10.1155/2015/164943

20. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266(5604):730—732. DOI: 10.1038/266730a0

21. Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: A new model sensitive to antidepressant treatments. Eur. J. Pharmacol. 1978;47(4):379—391. DOI: 10.1016/0014-2999(78)90118-8

22. Crowley JJ, Blendy JA, Lucki I. Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology. 2005;183(2):257—264. DOI: 10.1007/s00213-005-0166-5

23. Tang M, He T, Meng Q, et al. Immobility responses between mouse strains correlate with distinct hippocampal serotonin transporter protein expression and function. Int. J. Neuropsychopharmacol. 2014;17(11):1737— 1750. DOI: 10.1017/s146114571400073x

24. Povarnina PY, Garibova TL, Gudasheva TA, Seredenin SB. Antidepressant effect of an orally administered dipeptide mimetic of the brain-derived neurotrophic factor. Acta Naturae. 2018;10(3 Pt 38):81 —83. DOI: 10.32607/20758251-2018-10-3-81-84

25. Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 2002;22(8):3251—3261. DOI: 10.1523/jneurosci.22-08-03251.2002

26. Schmidt HD, Duman RS. Peripheral BDNF produces antidepressantlike effects in cellular and behavioral models. Neuropsychopharmacology. 2010;35(12):2378—2391. DOI: 10.1038/npp.2010.114

27. Zhang JC, Yao W, Dong C, et al. Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology. 2015;232(23):4325—4335. DOI: 10.1007/s00213-015-4062-3

28. Liu X, Chan C, Jang S, et al. A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J. Med. Chem. 2010;53(23):8274-8286. DOI: 10.1021/jm101206p

29. Jang SW, Liu X, Yepes M, et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. USA. 2010;107(6):2687—2692. DOI: 10.1073/pnas.0913572107


Review

For citations:


Mezhlumyan A.G., Tallerova A.V., Povarnina P.Yu., Sazonova N.M., Tarasiuk A.V., Gudasheva T.A. Screening study of nerve growth factor's and brain-derived neurotrophic factor's mimetics effects at the experimental depression model. Pharmacokinetics and Pharmacodynamics. 2020;(1):11-17. (In Russ.) https://doi.org/10.37489/2587-7836-2020-1-11-17

Views: 897


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)