Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Chemoreactome modeling the effects of anions of lithium salts ascorbate, nicotinate, hydroxybutyrate komenata and lithium carbonate

Abstract

The estimates of the neurophysiological, pharmacokinetic, hemodynamic and anti-inflammatory properties of ascorbate anion were obtained. In comparison with the control molecules (nicotinate, oxybutyrate, comenate, carbonate) ascorbate anion has characteristically higher affinity for serotonin, dopamine, benzodiazepine, adrenergic receptors. Higher affinity for human benzodiazepine receptor indicates possible anxiolytic effects of ascorbate. Ascorbate anion can be characterized by a strong antioxidant and anti-inflammatory effect caused by modulation of prostaglandin metabolism. Ascorbate anion can also exhibit anticoagulant, antihyperglycemic and antihyperlipidemic effects. Chemoreactome simulation results also indicated that carbonate anion has none of the aforementioned properties of ascorbate anion.

About the Authors

I. Yu. Torshin
Moscow Institute of Physics and Technology (State University)
Russian Federation


I. S. Sardaryan
FSBI HPE «St. Petersburg State Pediatric Medical University» of the Ministry of Healthcare of the Russian Federation
Russian Federation


O. A. Gromova
FSBI HPE «Ivanovo State Medical Academy» of the Ministry of Healthcare of the Russian Federation
Russian Federation


V. A. Rastashansky
Moscow Institute of Physics and Technology (State University)
Russian Federation


L. E. Fedotova
FSBI HPE «Ivanovo State Medical Academy» of the Ministry of Healthcare of the Russian Federation
Russian Federation


References

1. Torshin I. Yu. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, 2009, ISBN: 978-1-60692-217

2. Torshin I. Y., Rudakov K. V. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2014. Т. 24. № 1. С. 11-23.

3. Torshin I. Y., Rudakov K. V. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 2: Local completeness of invariants of chemographs in view of the combinatorial theory of solvability. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2014. Т. 24. № 2. С. 196-208.

4. Рудаков К.В., Торшин И.Ю. Об отборе информативных значений признаков на базе критериев разрешимости в задаче распознавания вторичной структуры белка. ДАН, 2011, Т. 441, № 1, с. 1-5.

5. Рудаков К.В., Торшин И.Ю. Анализ информативности мотивов на основе критерия разрешимости в задаче распознавания вторичной структуры белка. Информатика и её применения, Т. 5, № 4, 2011, с. 40-50.

6. Torshin I. Yu. On solvability, regularity, and locality of the problem of genome annotation. Pattern Recognition and Image Analysis, 2010, V 20(3): 386-395.

7. Журавлёв Ю.И., Рудаков К.В., Торшин И.Ю. Алгебраические критерии локальной разрешимости и регулярности как инструмент исследования морфологии аминокислотных последовательностей. Труды МФТИ. - 2011 - Т. 3. № 4, с. 67-76.

8. Торшин И.Ю., Громова О.А. Экспертный анализ данных в молекулярной фармакологии. М., Изд. МЦНМО, 2012, 768 с.

9. Bolton E., Wang Y., Thiessen P.A., Bryant S.H. PubChem: Integrated Platform of Small Molecules and Biological Activities. Chapter 12 IN Annual Reports in Computational Chemistry, Volume 4, American Chemical Society, Washington, DC, 2008 Apr. (pubchem.ncbi.nlm.nih.gov).

10. Wishart D.S., Tzur D., Knox C., Eisner R., Guo A.C., Young N., Cheng D., Jewell K., Arndt D., Sawhney S., Fung C., Nikolai L., Lewis M, Coutouly M.A., Forsythe I., Tang P., Shrivastava S., Jeroncic K., Stothard P., Amegbey G., Block D., Hau D.D., Wagner J., Miniaci J., Clements M., Gebremedhin M., Guo N., Zhang Y., Duggan G.E., Macinnis G.D., Weljie A.M., Dowlatabadi R., Bamforth F., Clive D., Greiner R., Li L., Marrie T., Sykes B.D., Vogel H.J., Querengesser L. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35(Databas: D521-D526.

11. Müller C.P., Carey R.J., Huston J.P., De Souza Silva M.A. Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol. 2007 Feb;81(3):133-78.

12. ОЛС (Обращение лекарственных средств). ФГУ «Научный центр экспертизы средств медицинского применения» Росздравнадзора РФ (27.03.2008)

13. Braga R.C., Alves V.M., Silva M.F., Muratov E., Fourches D., Tropsha A., Andrade C.H. Tuning HERG out: antitarget QSAR models for drug development. Curr Top Med Chem. 2014;14(11):1399-415.

14. Sanguinetti M.C., Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006 Mar 23;440(7083):463-9.

15. Gaikwad A.B., Viswanad B., Ramarao P. PPAR gamma agonists partially restores hyperglycemia induced aggravation of vascular dysfunction to angiotensin II in thoracic aorta isolated from rats with insulin resistance. Pharmacol Res. 2007 May;55(5):400-7.

16. Torshin I. Yu. Bioinformatics in the post-genomic era: physiology and medicine. Nova Biomedical Books, NY, USA (2007), ISBN1-60021-752-4.


Review

For citations:


Torshin I.Yu., Sardaryan I.S., Gromova O.A., Rastashansky V.A., Fedotova L.E. Chemoreactome modeling the effects of anions of lithium salts ascorbate, nicotinate, hydroxybutyrate komenata and lithium carbonate. Pharmacokinetics and Pharmacodynamics. 2016;(3):47-57. (In Russ.)

Views: 702


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)