Screening of the compounds having cardiotropic activity among the α, ω-diarilmetil derivatives of bis-(ω-aminoalkyl)amines
Abstract
About the Authors
S. A. KryzhanovskiiRussian Federation
A. M. Likhosherstov
Russian Federation
I. B. Tsorin
Russian Federation
V. N. Stolyaruk
Russian Federation
M. B. Vititnova
Russian Federation
G. V. Mokrov
Russian Federation
T. A. Gudasheva
Russian Federation
References
1. Kantor P.F., Lucien A., Kozak R., Lopaschuk G.D. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000; 86: 5: 580-588.
2. Marzilli M. Recurrent and resistant angina: is the metabolic approach an appropriate answer? Coron. Artery Dis. 2004; 15: Suppl. 1: S23-S27.
3. Mencarelli A., Cipriani S., Renga B., D’Amore C., Palladino G., Distrutti E., Baldelli F., Fiorucci S. FXR activation improves myocardial fatty acid metabolism in a rodent model of obesity-driven cardiotoxicity. Nutr. Metab. Cardiovasc. Dis. 2013; 23: 2: 94-101.
4. Snorek M., Hodyc D., Sedivy V., Durisovà J., Skoumalovâ A., Wilhelm J., Neckâr J., Kolâr F., Herget J. Short-term fasting reduces the extent of myocardial infarction and incidence of reperfusion arrhythmias in rats. Physiol. Res. 2012; 61: 6: 567-574.
5. Stanley W.C. Myocardial energy metabolism during ischemia and the mechanisms of metabolic therapies. J. Cardiovasc. Pharmacol. Ther. 2004; 9: Suppl. 1: S31-S45.
6. Stanley W.C. Partial fatty acid oxidation inhibitors for stable angina. Expert Opin. Investig. Drugs. 2002; 11: 5: 615-629.
7. Tousoulis D., Bakogiannis C., Briasoulis A., Papageorgiou N., Androulakis E., Siasos G., Latsios G., Kampoli A.M., Charakida M., Toutouzas K., Stefanadis C. Targeting myocardial metabolism for the treatment of stable angina. Curr. Pharm. Des. 2013; 19: 9: 1587-1592.
8. Ussher J.R., Jaswal J.S., Lopaschuk G.D. Pyridine nucleotide regulation of cardiac intermediary metabolism. Circ. Res. 2012; 111: 5: 628-641.
9. van Bilsen M. «Energetics» of heart failure. Ann. NY Acad. Sci. 2004; 1015: 238-249.
10. Wyatt K.M., Skene C., Veitch K., Hue L., McCormack J.G. The antianginal agent ranolazine is a weak inhibitor of the respiratory complex I, but with greater potency in broken or uncoupled than in coupled mitochondria. Biochem Pharmacol. 1995; 50: 10: 1599-1606.
11. Yamamoto S., Matsui K., Sasabe M., Ohashi N. Effect of an orally active Na+/H+ exchange inhibitor, SMP-300, on experimental angina and myocardial infarction models in rats. J. Cardiovasc. Pharmacol. 2002; 39: 2: 234-241.
12. Руководство по проведению доклинических исследований лекарственных средств. М.: 2013; часть 1: 385-416.2
13. Aldakkak M., Camara A.K., Heisner J.S., Yang M., Stowe D.F. Ranolazine reduces Ca2+ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Pharmacol Res. 2011; 64: 4: 381-392
Review
For citations:
Kryzhanovskii S.A., Likhosherstov A.M., Tsorin I.B., Stolyaruk V.N., Vititnova M.B., Mokrov G.V., Gudasheva T.A. Screening of the compounds having cardiotropic activity among the α, ω-diarilmetil derivatives of bis-(ω-aminoalkyl)amines. Pharmacokinetics and Pharmacodynamics. 2016;(2):10-13. (In Russ.)