Pharmacokinetic interaction of drugs, the metabolisable cytochrome P450 isoenzyme CYP2C9
Abstract
About the Authors
O. G. GribakinaRussian Federation
G. B. Kolyvanov
Russian Federation
A. A. Litvin
Russian Federation
A. O. Viglinskaya
Russian Federation
V. P. Zherdev
Russian Federation
References
1. Грибакина О.Г., Колыванов Г.Б., Литвин А.А., и др. Фармакокинетическое взаимодействие афобазола с лозартаном - препаратом-субстратом цитохрома CYP2C9 в эксперименте // Экспер. и клин. фармакол. 2013; 76: 3: 35-37.
2. Грибакина О.Г., Колыванов Г.Б., Литвин А.А., и др. Оценка фармакокинетического взаимодействия афобазола с препаратом-субстратом изофермента цитохрома Р450 CYP2C9 // Экспер. и клин. фармакол. 2015; 78: 12: 18-22.
3. Новицкая Я.Г., Грибакина О.Г., Литвин А.А. и др. In vivo оценка метаболического отношения маркеров CYP2C9 и CYP1A2 после введения афобазола в сравнении со стандартными индукторами и ингибиторами цитохромов // Экспериментальная и клиническая фармакология. 2013; 76: 11: 36-39.
4. Пронина, О.Г. (Грибакина), Колыванов Г.Б., Виглинская А.О., Жердев В.П. Количественное определение лозартана и его метаболита в моче крыс // Вестник Московского Университета. Сер. 2. Химия. 2012; 53: 2: 194-197.
5. Сычёв Д.А., Аникин Г.С., Александрова Е.К., и др. Фармакокинетическое взаимодействие лекарственных средств с фруктовыми соками. Клиническое значение // Клиническая фармакология и фармакоэкономика. 2008; 1: 2: 57-67.
6. Agrawa A.K., Shapiro B.H. Gender, age and dose effects of neonatally administered aspartate on the sexually dimorphic plasma growth hormone profiles regulating expression of the rat sex-dependent hepatic CYP isoforms // Drug Metab. Dispos. 1997; 25: 11: 1249-1256.
7. Andersson T., Regardh C.G., Lou Y.C. et al. Polymorphic hydroxylation of S-mephenytoin and omeprazole metabolism in Caucasian and Chinese subjects // Pharmacogenetics. 1992; 2: 1: 25-31.
8. Anzenbacher P., Anzenbacherov E. Cytochromes P450 and metabolism of xenobiotics // CMLS, Cell. Mol. Life Sci. 2001; 58: 5 - 6: 737-747.
9. Archakov A.I., Bachmanova G.I. Cytochrome P450 and active oxygen // London-New York-Philadelphia: Taylor & Francis, 1990; 435.
10. Brockmöller J., Kirchheiner J., Meisel C., Roots I. Pharmacogenetic diagnostics ofcytochrome P450 polymorphisms in clinical drug development and in drug treatment // Pharmacogenomics. 2000; 1: 2: 125-51.
11. Cao X., Gibbs S., Fang L., et al. Why is it challenging to predict intestinal drug absorption and oral bioavailabilityin human using rat model // Pharm Res. 2006; 23: 8: 1675-1686.
12. Chang G.W., Kam P.C. The physiological roles of cytochrome P450 isoenzymes // Anaesthesia. 1999; 54: 1: 42.
13. Chen T.L., Lin C.J., Liu C.C. Cytochrome P-450-dependent monooxygenase system and anesthetics // Acta Anaesthesiol. Sin. 1995; 33: 3: 185-194.
14. Choi D.H., Li C., Choi J.S. Effects of myricetin, an antioxidant, on the pharmacokinetics of losartan and its active metabolite, EXP-3174, in rats: possible role of cytochrome P450 3A4, cytochrome P450 2C9 and P-glycoprotein inhibition by myricetin // Journal of Pharmacy and Pharmacology. 2010; 62: 7: 908-914.
15. Christensen L.K., Hansen J.M., Kristensen M. Sulphaphenazole-induced hypoglycaemic attacks in tolbutamide-treated diabetics // Lancet. 1963; 2: 7321: 1298-1301.
16. Danielson P.B. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans // Curr. Drug Metab. 2002; 3: 6: 561-597.
17. DeLozier T.C., Lee S.C., Coulter S.J., et al. Functional characterization of novel allelic variants of CYP2C9 recently discovered in southeast // J Pharmacol Exp Ther. 2005; 315: 3: 1085-90.
18. Dickstein K., Timmermans P., Segal R. Losartan: a selective angiotensin II type 1 (AT1) receptor antagonist for the treatment of heart failure // Expert Opin Investig Drugs. 1998; 7: 11: 1897-1914.
19. Doherty M.M., Charman W.N. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism // Clin. Pharmacokinet. 2002; 41: 4: 235-253.
20. Donner K.M., Hiltunen T.P., Suonsyrjä et al. CYP2C9 genotype modifies activity of the renin-angiotensin-aldosterone system in hypertensive men // J Hypertens. 2009; 27: 10: 2001-2009.
21. Ferguson S.S., LeCluyse. E.L., Negishi M. et al. Regulation of human CYP2C9 by the constitutive androstane receptor: discovery of a new distal binding site // Mol Pharmacol. 2002; 62: 3: 737-746.
22. Ferguson S.S., Chen Y., LeCluyse E.L. et al. Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha // Mol Pharmacol. 2005; 68: 3: 747-757.
23. Fischer M., Knoll M., Sirim D. The Cytochrome P450 Engineering Database: A Navigation and Prediction Tool for the Cytochrome P450 Protein Family // Bioinformatics. 2007; 23: 15: 2015-2017.
24. Frye R.F. Probing the world of cytochrome P450 enzymes // Mol Interv. 2004; 4: 3: 157-162.
25. García-Martín E., Martinez C., Ladero J., Agúndez J. Interethnic and intraethnicvariability of CYP2C8 and CYP2C9 polymorphisms in healthy individuals // Mol Diagn Ther. 2006; 10: 1: 29-40.
26. Gonzalez F.J., Matsunaga T., Nagata K. Debrisoquine 4-hydroxylase: characterization of a new P-450 gene subfamily, regulation, chromosome mapping, and molecular analysis of the DA rat polymorphism // DNA. 1987; 6: 2: 149-161.
27. Gorski J.C., Huang S.M., Pinto A., et al. The effect of echinacea (Echinacea purpurea root) on cytochrome P450 activity in vivo // Clin Pharmacol Ther. 2004; 75: 1: 89-100.
28. Grant P. Warfarin and cranberry juice: an interaction // J Heart Valve Dis. 2004; 13: 1: 25-26.
29. Guengerich, F.P. Human cytochrome P450 enzymes. Cytochrome P450: Structure, Mechanism, and Biochemistry // Kluwer Academic/ Plenum Press, 2005; 377-531.
30. Gurley J., Gardner S.F., Hubbard_ M.A. et al. Cytochrome P450 phenotypic ratio for predicting herb-drug interaction in humans // Clinical pharmacology and therapeuticus. 2002; 72: 3: 276-287.
31. Han Y., Guo D., Chen Y., et al. Effect of silymarin on the pharmacokinetics of losartan and its active metabolite E-3174 in healthy Chinese volunteers // Eur J Clin Pharmacol. 2009; 65: 6: 585-91.
32. He S.M., Zhou Z.W., Li X.T. et al. Clinical drugs undergoing polymorphic metabolism by human cytochrome P450 2C9 and the implication in drug development // Curr Med Chem. 2011; 18: 5: 667-713.
33. Hidaka M., Nagata M., Kawano Y. et al. Inhibitory effects of fruit juices on cytochrome P450 2C9 activity in vitro // Biosci Biotechnol Biochem. 2008; 72: 2: 406-11.
34. Ingelman-Sundberg, M, Daly A.K. and Nebert D.W. Home Page of the Human CytochromeP450 (CYP) Allele Nomenclature Committee, Available at. 2008. URL: http://www.cypalleles.ki.se/.
35. Kazierad D.J., Martin D.E., Blum R.A. et al. Effect of fluconazole on the pharmacokinetics of eprosartan and losartan in healthy male volunteers // Clin Pharmacol Ther. 1997; 62: 4: 417-25.
36. Klose T.S., Blaisdell J.A., Goldstein J.A. Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs // J Biochem Mol Toxicol. 1999; 13: 6: 289-295.
37. Ko J., Desta Z., Soukhova N. et al. In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6 // Br J Clin Pharmacol. 2000; 49: 4: 343-351.
38. Kobayashi M., Takagi M., Fukumoto K. et al. The effect of bucolome, a CYP2C9 inhibitor, on the pharmacokinetics of losartan // Drug Metab Pharmacokinet. 2008; 23: 2: 115-119.
39. Komoroski B.J., Zhang S., Cai H. et al. Induction and inhibition of cytochromes P450 by the St. John’s wort constituent hyperforin in human hepatocyte cultures // Drug Metab Dispos. 2004; 32: 5: 512-518.
40. Kumar V., Brundage R.C., Oetting W.S. et al. Differential genotype dependent inhibition of CYP2C9 in humans // Drug Metab Dispos. 2008; 36: 1242-1248.
41. Lapple F., O. von Richter, Fromm M.F. et al. Differential expression and function of CYP2C isoforms in human intestine and liver // Pharmacogenetics. 2003; 13: 9: 565-575.
42. Lee C.R., Goldstein J., Pieper J. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human // Pharmacogenetics. 2002; 12: 3: 251-263.
43. Lewis D. Cytochrome P450. Substrate specificity and metabolism.In: Cytochromes P450: structure, function, and mechanism - Bristol: Taylor & Francis. 1996; 115-167.
44. Lewis D.F. Modi S., Dickins M. Structure-activity relationship for human cytochrome P450 substrates and inhibitors // Drug Metab Rev. 2002; 34; 1-2: 69-82.
45. Liu Y., Li X., Yang C. et al. UPLC-MS-MS method for simultaneous determination of caffeine, tolbutamide, metoprolol, and dapsone in rat plasma and its application to cytochrome P450 activity study in rats // J Chromatogr Sci. 2013; 51: 1: 26-32.
46. Lo M.W., Goldberg M.R., McCrea J.B. et al. Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans // Clin Pharmacol Ther. 1995; 58: 6: 641-649.
47. Lofgren S., Baldwin R.M., Hiratsuka M. et al. Generation of mice transgenic for human CYP2C18 and CYP2C19: characterization of the sexually dimorphic gene and enzyme expression // Drug Metab Dispos. 2008; 36: 5: 955-962.
48. Matsunaga T., Ohmori S., Ishida M. et al. Molecular cloning of monkey CYP2C43 cDNA and expression in yeast // Drug Metab Pharmacokinet. 2002; 17: 2: 117-124.
49. Meadowcroft A.M., Williamson K.M., Patterson J.H. et al. The effects of fluvastatin, a CYP2C9 inhibitor, on losartan pharmacokinetics in healthy volunteers // J Clin Pharmacol. 1999; 39: 4: 418-424.
50. Meyer U.A., Skoda R.C., Zanger U.M. The genetic polymorphism of debrisoquine/sparteine metabolism-molecular mechanisms // Pharmacol Ther. 1990; 46: 2: 297-308.
51. Mergenhagen K.A., Sherman O. Elevated International Normalized Ratio after concurrent ingestion of cranberry sauce and warfarin // Am J Health Syst Pharm. 2008; 65: 22: 2113-2116.
52. Morgan E.T. Hormonal and developmental regulation of expression of the hepatic microsomal steroid 16 alpha-hydroxylase cytochrome P-450 apoprotein in the rat [Text] / E.T. Morgan, C. MacGeoch, J.A. Gustafsson // J Biol Chem. 1985; 260: 22: 11895-8.
53. Mugford C.A., Kedderis G.L. Sex-dependent metabolism of xenobiotics // Drug Metab Rev. 1998; 30: 3: 441-498.
54. Munafo A., Christen Y., Nussberger J. et al. Drug concentration response relationships in normal volunteers after oral administration oflosartan, an angiotensin I1 receptor antagonist // Clin Pharmacol Ther. 1992; 51: 5: 513-521.
55. Nagata M., Hidaka M., Sekiya H. Effects of Pomegranate Juice on Human Cytochrome P450 2C9 and Tolbutamide Pharmacokinetics in // Drug metabolism and disposition. 2007; 35: 2: 302-305.
56. Nebert D.W., Gonzalez F.J. P-450 Genes: structure, evolution, and regulation // Ann. Rev. Biochem. 1987; 56: 945-993.
57. Nedelcheva V, Gut I. P450 in the rat and man: methods of investigation, substratespecificities and relevance to cancer // Xenobiotica. 1994; 24: 12: 1151-1175.
58. Nelson D.R., Kamataki T., Waxman D.J. et al. The P450 superfamily: update on newsequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature // DNA and Cell Biology. 1993; 12: 1: 1-51.
59. Pascussi J.M., Gerbal-Chaloin S., Drocourt L. et al. The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors // Biochim Biophys Acta. 2003; 1619: 3: 243-253.
60. Pham D.Q., Pham A.Q. Interaction potential between cranberry juice and warfarin //Am J Health Syst Pharm. 2007; 64: 5: 490-494.
61. Porter T.D., Coon M.J. Cytochrome P-450 multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms // J. Biol. Chem. 1991; 266: 21: 13469-13472.
62. Rahman A., Korzekwa R., Grogan J. et al. Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8 // Cancer Res. 1994; 54: 21: 5543-5546.
63. Reid J., Kuffel M.J., Ruben S.L. et al. Rat and human liver cytochrome P-450 isoform metabolism of ecteinascidin743 does not predict gender-dependent toxicity in humans // Clin Cancer Res. 2002; 8: 9: 2952-2962.
64. Romkes M.B., Faletto J.A., Blaisdell J.L. et al. Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily // Biochemistry. 1991; 30: 13: 3247-3255. актуальный обзор
65. Sekino K., Kubota T., Okada Y. et al. Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects // Eur J Clin Pharmacol. 2003; 59: 8-9: 589-592.
66. Schwarz U.I. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene // Eur J Clin Invest. 2003; 33: 2: 23-30.
67. Shimada T., Yamazaki M., Mimura Y. et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians // J. Pharmacol Exp Ther. 1994; 270: 1: 414-423.
68. Sica D.A., Gehr T.W., Ghosh S. Clinical pharmacokinetics of losartan// Clin Pharmacokinet. 2005; 44: 8: 797-814.
69. Soldner A. HPLC assays to simultaneously determine the angiotensin-AT1 antagonist losartan as well as its main and active metabolite EXP 3174 in biological material of human and rats [Text] / A. Soldner, H. Spahn-Langguth, E. Mutschler // J Pharm Biomed Anal. 1998; 16: 5: 863-873.
70. Stearns R.A., Chakravarty P.K., Chen R., Chiu S.H. Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily // Drug Metab Dispos. 1995; 23: 2: 207-215.
71. Stearns R.A., Miller R.R., Doss G.A. et al. The metabolism of Dup 753, a nonpeptide angiotensin II receptor antagonist, by rat, monkey and human liver // Drug Metab.Dispos. 1992; 20: 2: 281-287.
72. Tamaki T., Nishiyama A., Kimura S. et al. EXP3174: the major active metabolite of losartan // Cardiovasc Drug. 1997; 15: 2: 122-136.
73. Ushijima K., Tsuruoka S., Tsuda H. et al. Cranberry juice suppressed the diclofenac metabolism by human liver microsomes, but not in healthy human subjects // J Clin Pharmacol. 2009; 68: 2: 194-200.
74. Varshney E., Saha N., Tandon M. et al. Genotype-phenotype correlation of cytochrome P450 2C9 polymorphism in Indian National Capital Region // Eur J Drug Metab Pharmacokinet. 2013; 38: 4: 275-281.
75. Verhoef T.I., Redekop W.K., Daly A.K. et al. Pharmacogenetic-guided dosing of coumarin anticoagulants: algorithms for warfarin, acenocoumarol and phenprocoumon // Br J Clin Pharmacol. 2014; 77: 4: 626 - 641.
76. Wang G., Xiao C.Q., Li Z. Effect of soy extract administration on losartan pharmacokinetics in healthy female volunteers // Ann Pharmacother. 2009; 43: 6: 1045-1049.
77. Wang, S.L. Huang J., Lai M.D., Tsai J.J. Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese // Pharmacogenetics. 1995; 5: 1: 37-42.
78. Wang Z., Gorski J.C., Hamman M.A. et al. The effects of St John’s wort (Hypericum perforatum) on human cytochrome P450 activity // Clin Pharmacol Ther. 2001; 70: 4: 317-326.
79. Wijnen P.A., Buijsch R.A., Drent M. et al. Review article: the prevalence and clinical relevance of cytochrome P450 polymorphisms // Aliment Pharmacol Ther. 2007; 26: Suppl. 2: 211- 219.
80. Williamson K.M., Patterson J.H., McQueen R.H. et al. Effects of erythromycin or rifampin on losartan pharmacokinetics in healthy // Clin Pharmacol Ther. 1998; 63: 3: 316-23.
81. Yang S., CHOY., CHOIJ. Effects of ticlopidine on pharmacokinetics oflosartan and its main metabolite EXP-3174 in rats // Acta Pharmacologica Sinica. 2011; 32: 7: 967-972.
82. Yasar U., Dahl M.L., Christensen M., Eliasson E. Intra-individual variability in urinary losartan oxidation ratio, an in vivo marker of CYP2C9 activity // J Clin Pharmacol. 2002; 54: 2: 183-185.
83. Yoshitani T., Yagi H., Inotsume N. et al. Effect of experimental renal failure on the pharmacokinetics of losartan in rats // Biol. Pharm.Bull. 2002; 25: 8: 1077-1083.
84. Yun C.H., Lee H.S., Lee H. et al. Oxidation of the angiotensin II receptor antagonist losartan (DuP 753) in human liver microsomes. Role of cytochrome P4503A(4) in formation of the active metabolite EXP3174 // Drug Metab Dispos. 1995; 23: 2: 285-289.
85. Zanger U., Turpeinen M., Klein K., Schwab M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation // Anal Bioanal Chem. 2008; 392: 6: 1093-1108.
86. Zaphiropoulos P.G. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis // Mol Cell Biol. 1997; 17: 2985-2993.
87. Zhang S., Song N., Li Q. et al. Liquid chromatography/tandem mass spectrometry method for simultaneous evaluation of activities of five cytochrome P450s using a five-drug cocktail and application to cytochrome P450 phenotyping studies in rats // J Chromatogr B Analyt Technol Biomed Life Sci. 2008; 871: 1: 78-89.
88. Zhang Z.Y., Kerr J., Wexler R.S. et al. Warfarin analog inhibition of human CYP2C9-catalyzed S-warfarin 7-hydroxylation // Thromb Res. 1997; 88: 389-398.
89. Zhou S.F., Zhou Z.W., Yang L.P. et al. Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development // Curr Med Chem. 2009; 16: 27: 3480-3675.
90. Zhou S.F., Zhou Z.W., Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance // Toxicology. 2010; 278: 2: 165-88.
Review
For citations:
Gribakina O.G., Kolyvanov G.B., Litvin A.A., Viglinskaya A.O., Zherdev V.P. Pharmacokinetic interaction of drugs, the metabolisable cytochrome P450 isoenzyme CYP2C9. Pharmacokinetics and Pharmacodynamics. 2016;(1):21-32. (In Russ.)