Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Factors, effecting on drug bioavailability

Abstract

Effects such as excipients, type and general physico-chemical properties of drug form, some of technological manufacturing approaches of the drug forms on bioavailability were consider. Effects of the above-listed factors on the examples used in medical practice were demonstrated.

About the Authors

P. . Bochkov
FSBSI «Zakusov Institute of Pharmacology»
Russian Federation


R. . Shevchenko
FSBSI «Zakusov Institute of Pharmacology»
Russian Federation


A. . Litvin
FSBSI «Zakusov Institute of Pharmacology»
Russian Federation


G. . Kolyvanov
FSBSI «Zakusov Institute of Pharmacology»
Russian Federation


V. . Zherdev
FSBSI «Zakusov Institute of Pharmacology»
Russian Federation


References

1. Aleeva G.N., Zhuravleva M.V., Khafiz’yanova R.K. The role of excipients in determining the pharmaceutical and therapeutic properties of medicinal agents (Review). Pharm. Chem. J. 2009; 43: 4: 230-234.

2. Koo O.M.Y. Excipients-Application Challenges and Examples of New Excipients in Advanced Drug Delivery Systems. Am. Pharm. Rev. 2011; 14: 2: 60.

3. Almeida H., Amaral M.H., Lobao P. Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery. J. Appl. Pharm. Sci. 2012; 2: 6: 1-10.

4. Shen L., Zhang X., Liu M., Wang Z. Transferring of red Monascus pigments from nonionic surfactant to hydrophobic ionic liquid by novel microemulsion extraction. Sep. Purif. Technol. 2014; 138: 34-40.

5. Vilar G., Tulla-Puche J., Albericio F. Polymers and drug delivery systems Curr. Drug Deliver. 2012; 9: 4: 367-394.

6. Vyas A., Saraf S., Saraf S. Cyclodextrin based novel drug delivery systems J. Inclusion Phenom. Macrocyc. Chem. 2008; 62: 1-2: 23-42.

7. Di Cagno M., Nielsen T.T., Larsen K.L., Kuntsche J., Bauer-Brandl A. ß-Cyclodextrin-dextran polymers for the solubilization of poorly soluble drugs Int. J. Pharm. 2014; 468: 1: 258-263.

8. Sammour O.A., Hammad M.A., Zidan A.S., Mowafy A.G. QbD approach of rapid disintegrating tablets incorporating indomethacin solid dispersion. Pharm. Dev. Technol. 2011; 16: 3: 219-227.

9. Laitinen R., Suihko E., Bjorkqvist M., et al. Perphenazine solid dispersions for orally fast-disintegrating tablets: physical stability and formulation Drug Dev. Ind. Pharm. 2010; 36: 5: 601-613.

10. Huang Y., Luo X., You X., et al. The preparation and evaluation of water-soluble SKLB610 nanosuspensions with improved bioavailability. AAPS PharmSciTech. 2013; 14: 3: 1236-1243.

11. Lima Á.A.N., Soares-Sobrinho J.L., Silva J.L., et al. The use of solid dispersion systems in hydrophilic carriers to increase benznidazole solubility J. Pharm. Sci. 2011; 100:6: 2443-2451.

12. Shah A., Serajuddin A.T.M. Conversion of solid dispersion prepared by acid-base interaction into free-flowing and tabletable powder by using Neusilin® US2. Int. J. Pharm. 2015; 484: 1: 172-180.

13. Kapse S.V., Gaikwad R.V., Samad A., Devarajan P.V., et al. Self nanoprecipitating preconcentrate of tamoxifen citrate for enhanced bioavailability. Int. J. Pharm. 2012; 429: 1: 104-112.

14. Han M., Yu X., Guo Y., et al. Honokiol nanosuspensions: Preparation, increased oral bioavailability and dramatically enhanced biodistribution in the cardio-cerebro-vascular system. Colloids Surf., B: Biointerfaces. 2014; 116: 114-120.

15. Liu Y., Zhang D., Duan C., et al. Studies on pharmacokinetics and tissue distribution of bifendate nanosuspensions for intravenous delivery J. Microencapsulation. 2012; 29: 2: 194-203.

16. Ali H.S.M., York P., Ali A.M.A., Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J. Controlled Release. 2011; 149: 2: 175-181.

17. Momoh M.A., Brown S.A., Onunkwo G.C., et al. Effect of Hydrophilic and Hydrophobic Binders on the Physico-Chemical Properties of Sodium salicylate Tablet Formulation J. Pharm. Res. 2012; 5: 4: 2045-2048.

18. Sarode A.L., Wang P., Obara S., Worthen D.R. Supersaturation, nucleation, and crystal growth during single-and biphasic dissolution of amorphous solid dispersions: Polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs. Eur. J. Pharm. Biopharm. 2014; 86: 3: 351-360.

19. Six K., Daems T., Hoon J. de, et al. Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion. Eur. J. Pharm. Sci. 2005; 24: 2: 179-186.

20. Pasut G., Veronese F.M. PEG conjugates in clinical development or use as anticancer agents: an overview. Adv. Drug Deliver. Rev. 2009; 61: 13: 1177-1188.

21. Sanchis J., Canal F., Lucas R., Vicent M.J. Polymer-drug conjugates for novel molecular targets. Nanomedicine. 2010; 5: 6: 915-935.

22. Liu C., Desai K.G.H., Liu C. Enhancement of dissolution rate of valdecoxib using solid dispersions with polyethylene glycol 4000. Drug Dev. Ind. Pharm. 2005; 31: 1: 1-10.

23. Du B., Shen G., Wang D., et al. Development and characterization ofglimepiride nanocrystal formulation and evaluation ofits pharmacokinetic in rats. Drug Deliver. 2013; 20: 1: 25-33.

24. Kim S., Kim J.-H., Jeon O., et al. Engineered polymers for advanced drug delivery. Eur. J. Pharm. Biopharm. 2009; 71: 3: 420-430.

25. Parveen S., Sahoo S.K. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur. J. Pharm. 2011; 670: 2: 372-383.

26. Amiji M.M. Synthesis of anionic poly (ethylene glycol) derivative for chitosan surface modification in blood-contacting applications. Carbohydr. Polym. 1997; 32: 3: 193-199.

27. Dahan A., Miller J.M., Hoffman A. et al. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J. Pharm. Sci. 2010; 99: 6: 2739-2749.

28. Miller J.M., Beig A., Krieg B.J., et al. The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Molecular Pharmaceutics. 2011; 8: 5: 1848-1856.

29. Beig A., Miller J.M., Dahan A. Accounting for the solubility - permeability interplay in oral formulation development for poor water solubility drugs: the effect of PEG-400 on carbamazepine absorption. Eur. J. Pharm. Biopharm. 2012; 81: 2: 386-391.

30. Li Z., Han X., Zhai Y., et al. Critical determinant of intestinal permeability and oral bioavailability of pegylated all trans-retinoic acid prodrug-based nanomicelles: Chain length of poly (ethylene glycol) corona. Colloids Surf., B: Biointerfaces. 2015; 130: 133-140.

31. Hughey J.R., Keen J.M., Miller D.A., et. al. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions. Eur. J. Pharm. Sci. 2013; 48: 4: 758-766.

32. Soh J.L.P., Grachet M., Whitlock M., Lukas T. Characterization, optimisation and process robustness of a co-processed mannitol for the development of orally disintegrating tablets. Pharm. Dev. Tech. 2013; 18: 1: 172-185.

33. Marwaha M., Sandhu D., Marwaha R.K. Coprocessing of excipients: a review on excipient development for improved tabletting performance. Int. J. Appl. Pharm. 2010; 2: 3: 41-47.

34. Shamma R.N., Basha M. A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation. Powder Technol. 2013; 237: 406-414.

35. Giri T.K., Jana P., Sa B. Rapidly disintegrating fast release tablets of diazepam using solid dispersion: development and evaluation J. Sci. Ind. Res. 2008; 67: 6: 436-439.

36. Goddeeris C., Willems T., Van den Mooter G. Formulation of fast disintegrating tablets of ternary solid dispersions consisting of TPGS 1000 and HPMC 2910 or PVPVA 64 to improve the dissolution of the anti-HIV drug UC 781. Eur. J. Pharm. Sci. 2008; 34: 4: 293-302.

37. Dinunzio J.C., Schilling S. U., Coney A.W., et al. Use of highly compressible Ceolus™ microcrystalline cellulose for improved dosage form properties containing a hydrophilic solid dispersion. Drug Dev. Ind. Pharm. 2012; 38: 2: 180-189.

38. Leane M.M., Sinclair W., Qian F., et al. Formulation and process design for a solid dosage form containing a spray-dried amorphous dispersion of ibipinabant. Pharm. Dev. Tech. 2013; 18: 2: 359-366.

39. Fu Q., Sun J., Zhang D., et al. Nimodipine nanocrystals for oral bioavailability improvement: Preparation, characterization and pharmacokinetic studies. Colloids Surf., B: Biointerfaces. 2013; 109: 161-166.

40. Hong C., Dang Y., Lin G., et al. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: An in vitro and in vivo evaluation. Int. J. Pharm. 2014; 477: 1: 251-260.

41. Ige P.P., Baria K., Gattani S. G. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf., B: Biointerfaces. 2013; 108: 366-373.

42. Jiang T., Han N., Zhao B., et al. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation. Drug Dev. Ind. Pharm. 2012; 38: 10: 1230-1239.

43. Di L., Fish P. V., Mano T. Bridging solubility between drug discovery and development. Drug Discovery Today. 2012; 17: 9: 486-495.

44. Varshosaz J., Talari R., Mostafavi S.A., Nokhodchi A. Dissolution enhancement of gliclazide using in situ micronization by solvent change method. Powder Technol. 2008; 187: 3: 222-230.

45. Kawabata Y., Wada K., Nakatani M., et al. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int. J. Pharm. 2011; 420: 1: 1-10.

46. Zeng N., Hu Q., Liu Z., et al. Preparation and characterization of paclitaxel-loaded DSPE-PEG-liquid crystalline nanoparticles (LCNPs) for improved bioavailability. Int. J. Pharm. 2012; 424: 1: 58-66.

47. Seedher N., Kanojia M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs. Pharm. Dev. Tech. 2009; 14: 2: 185-192.

48. Tiwari G., Tiwari R., Rai K. Studies on development of controlled delivery of combination drug (s) to periodontal pocket. Indian J. Dent. Res. 2010; 21: 1: 72-83.

49. Asai K., Morishita M., Katsuta H., et al. The effects of water-soluble cyclodextrins on the histological integrity of the rat nasal mucosa. Int. J. Pharm. 2002; 246: 1: 25-35.

50. Del Valle E.M.M. Cyclodextrins and their uses: a review. Process Biochem. 2004; 39: 9: 1033-1046.

51. Carrier R.L., Miller L.A., Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J. Controlled Release. 2007; 123: 2: 78-99.

52. Géczy J., Bruhwyler J., Scuv?e-Moreau J., et. al. The inclusion of fluoxetine into y-cyclodextrin increases its bioavailability: behavioural, electrophysiological and pharmacokinetic studies. Psychopharm. 2000; 151: 4: 328-334.

53. Luengo J., Aranguiz T., Sepulveda J., et. al. Preliminary pharmacokinetic study of different preparations of acyclovir with ß-cyclodextrin. J. Pharm. Sci. 2002; 91: 12: 2593-2598.

54. Berger J., Reist M., Mayer J.M., et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2004; 57: 1: 19-34.

55. Bhattarai N., Gunn J., Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliver. Rev. 2010; 62: 1: 83-99.

56. Desai J., Alexander K., Riga A. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int. J. Pharm. 2006; 308: 1: 115-123.

57. Tanaka N., Imai K., Okimoto K., et. al. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): in vivo evaluation. J. Controlled Release. 2006; 112: 1: 51-56.

58. Tran H.T.T., Park J.B., Hong K.-H., et al. Preparation and characterization of pH-independent sustained release tablet containing solid dispersion granules of a poorly water-soluble drug. Int. J. Pharm. 2011; 415: 1: 83-88.

59. Evrard B., Chiap P., DeTullio P., et al. Oral bioavailability in sheep of albendazole from a suspension and from a solution containing hydroxypropyl-ß-cyclodextrin. J. Controlled Release. 2002; 85: 1: 45-50.

60. Wong J.W., Yuen K.H. Improved oral bioavailability of artemisinin through inclusion complexation with ß-and y-cyclodextrins. Int. J. Pharm. 2001; 227: 1: 177-185.

61. Ferreira S.M.Z., Domingos G.P., Ferreira D. dos S., et al. Technetium-99m-labeled ceftizoxime loaded long-circulating and pH-sensitive liposomes used to identify osteomyelitis. Bioorg. Med. Chem. Lett. 2012; 22: 14: 4605-4608.

62. Li L., ten Hagen T.L.M., Hossann M., et al. Mild hyperthermia triggered doxorubicin release from optimized stealth thermo sensitive liposomes improves intratumoral drug delivery and efficacy. J. Controlled Release. 2013; 168: 2: 142-150.

63. Tian H., Tang Z., Zhuang X., et al. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog. Polym. Sci. 2012; 37: 2: 237-280.

64. Yao J., Ruan Y., Zhai T., et al. ABC block copolymer as “smart” pH-responsive carrier for intracellular delivery of hydrophobic drugs. Polymer. 2011; 52: 15: 3396-3404.

65. Ramirez E., Burillo S.G., Barrera-Díaz C., et al. Use of pH-sensitive polymer hydrogels in lead removal from aqueous solution. J. Hazard. Mater. 2011; 192: 2: 432-439.

66. Yang L., Liu H. Stimuli-responsive magnetic particles and their applications in biomedical field. Powder Technol. 2013; 240: 54-65.

67. Lee H., Pietrasik J., Sheiko S.S., Matyjaszewski K. Stimuli-responsive molecular brushes. Prog. Polym. Sci. 2010; 35: 1: 24-44.

68. Brun-Graeppi A.K.A.S., Richard C., Bessodes M., et al. Cell microcarriers and microcapsules of stimuli-responsive polymers. J. Controlled Release. 2011; 149: 3: 209-224.

69. Hu J., Liu S. Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules. 2010; 43: 20: 8315-8330.

70. Chiappetta D.A., Sosnik A. Poly (ethylene oxide)-poly (propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm. 2007; 66: 3: 303-317.

71. Na K., Lee H., Hwang D.J. et al. pH-Sensitivity and pH-dependent structural change in polymeric nanoparticles of poly (vinyl sulfadimethoxine)-deoxycholic acid conjugate. Eur. Polym. J. 2006; 42: 10: 2581-2588.

72. Park M.-R., Seo B.-B., Song S.-C. Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone. Biomater. 2013; 34: 4: 1327-1336.

73. Risbud M. V., Hardikar A., Bhat S. V., Bhonde R.R. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J. Controlled Release. 2000; 68: 1: 23-30.

74. Ghandehari H., Kopecková P., Kopecek J. In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomater. 1997; 18: 12: 861-872.

75. Shivakumar Hg, Gupta Nv, Satish Cs. Preparation and characterization of gelatin-poly (methacrylic acid) interpenetrating polymeric network hydrogels as a ph-sensitive delivery system for glipizide Indian J. Pharm. Sci. 2007; 69: 1: 64-68.

76. Gupta P., Vermani K., Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today. 2002; 7: 10: 569-579.

77. Wasungu L., Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J. Controlled Release. 2006; 116: 2: 255-264.

78. Gupta B., Levchenko T., Torchilin V. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliver. Rev. 2005; 57: 4: 637-651.

79. Gil E.S. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci. 2004; 29: 12: 1173-1222.

80. Park H.-J., Yang F., Cho S.-W. Nonviral delivery of genetic medicine for therapeutic angiogenesis Adv. Drug Deliver. Rev. 2012; 64: 1: 40-52.

81. Green J.J., Langer R., Anderson D.G. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 2008; 41: 6: 749-759.

82. Sakaguchi N., Kojima C., Harada A., Kono K. Preparation of pH-sensitive poly (glycidol) derivatives with varying hydrophobicities: their ability to sensitize stable liposomes to pH. Bioconjugate Chem. 2008; 19: 5: 1040-1048.

83. Lee C.H., Kim J.-H., Lee H.J., et al. The generation of iPS cells using non-viral magnetic nanoparticlebased transfection. Biomater. 2011; 32: 28: 6683-6691.

84. Giri T.K., Kumar K., Alexander A., et al. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique. Bulletin of Faculty of Pharmacy, Cairo University. 2012; 50: 2: 147-159.

85. Kim M.-S., Kim J.-S., Park H.J., et. al. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int. J. Nanomedicine. 2011; 6: 2997.

86. Tung N.-T., Park C.-W., Oh T., et al. Formulation of solid dispersion of rebamipide evaluated in a rat model for improved bioavailability and efficacy. J. Pharm. Pharmacol. 2011; 63: 12: 1539-1547.

87. Kovacic B., Vrecer F., Planinsek O. Design of a drug delivery system with bimodal pH dependent release of a poorly soluble drug. Die Pharmazie-Int. J. Pharm. Sci. 2011; 66: 6: 465-466.

88. Ozeki T., Yuasa H., Kanaya Y. Application of the solid dispersion method to the controlled release of medicine. IX. Difference in the release of flurbiprofen from solid dispersions with poly (ethylene oxide) and hydroxypropylcellulose and the interaction between medicine and polymers. Int. J. Pharm. 1997; 155: 2: 209-217.

89. Swain S.K., Niranjan Patra Ch., Sruti J., Bhanoji Rao M.E. Design and evaluation of sustained release solid dispersions of verapamil hydrochloride. Int. J. Pharm. Sci. Nanotechnol. 2011; 3: 4: 1252-1262.

90. Huang J., Wigent R.J., Schwartz J.B. Nifedipine molecular dispersion in microparticles of ammonio methacrylate copolymer and ethylcellulose binary blends for controlled drug delivery: effect of matrix composition. Drug Dev. Ind. Pharm. 2006; 32: 10: 1185-1197.

91. Dangprasirt P., Pongwai S. Development of diclofenac sodium controlled release solid dispersion powders and capsules by freeze drying technique using ethylcellulose and chitosan as carriers. Drug Dev. Ind. Pharm. 1998; 24: 10: 947-953.

92. Verreck G., Decorte A., Heymans K., et al. The effect of pressurized carbon dioxide as a temporary plasticizer and foaming agent on the hot stage extrusion process and extrudate properties of solid dispersions of itraconazole with PVP-VA 64. Eur. J. Pharm. Sci. 2005; 26: 3: 349-358.

93. Ho H.-O., Chen C.-N., Sheu M.-T. Influence of pluronic F-68 on dissolution and bioavailability characteristics of multiple-layer pellets of nifedipine for controlled release delivery J. Controlled Release. 2000; 68: 3: 433-440.

94. Qureshi A.I., Cohen R.D. Mesalamine delivery systems: do they really make much difference? Adv. Drug Deliver. Rev. 2005; 57: 2: 281-302.

95. Shah N., Iyer R.M., Mair H.-J., et al. Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent?controlled coprecipitation process. J. Pharm. Sci. 2013; 102: 3: 967-981.

96. Augustijns P., Brewster M.E. Supersaturating drug delivery systems: fast is not necessarily good enough. J. Pharm. Sci. 2012; 101: 1: 7-9.

97. Shivakumar H.N., Desai B.G., Deshmukh G. Design and optimization of diclofenac sodium controlled release solid dispersions by response surface methodology. Indian J. Pharm. Sci. 2008; 70: 1: 22.

98. Tran P.H.-L., Tran T.T.-D., Park J.B., Lee B.-J. Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm. Res. 2011; 28: 10: 2353-2378.

99. Tandale P., Joshi D., Gaud R.S. Formulation and Evaluation of Extended Release Solid Dispersions Conatining Simvastatin. Asian J. Biomed. Pharm. Sci. 2011; 1: 3: 13-19.

100. Tran T.T.-D., Tran P.H.-L. Investigation of polyethylene oxide-based prolonged release solid dispersion containing isradipine. J. Drug Deliver. Sci. Technol. 2013; 23: 3: 269-274.

101. Liu X., Wang S., Chai L., et al. A two-step strategy to design high bioavailable controlled-release nimodipine tablets: The push-pull osmotic pump in combination with the micronization/solid dispersion techniques. Int. J. Pharm. 2014; 461: 1: 529-539.


Review

For citations:


Bochkov P., Shevchenko R., Litvin A., Kolyvanov G., Zherdev V. Factors, effecting on drug bioavailability. Pharmacokinetics and Pharmacodynamics. 2016;(1):12-20. (In Russ.)

Views: 3386


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)