Isoform CYP1A2, as a part of the cytochrome P450 superfamily
Abstract
About the Authors
Y. G. NovickayaRussian Federation
V. P. Zherdev
Russian Federation
A. O. Viglinskaya
Russian Federation
A. A. Litvin
Russian Federation
References
1. Белоусов Ю.Б., Моисеев В.С., Лепахин В.К. Клиническая фармакология и фармакотерапия. Москва: Универсум паблишинг, 1997. - 531 с.
2. Белоусов Ю.Б., Леонова М.В. Основы клинической фармакологии и рациональной фармакотерапии. Москва: Бионика, 2002. - 368 с.
3. Грибакина О.Г., Колыванов Г.Б., Литвин А.А., Жердев В.П., Середенин С.Б. Оценка фармакокинетического взаимодействия афобазола с препаратом-субстратом цитохрома CYP2C9 в эксперименте in vivo. Экспериментальная и клиническая фармакология. // Экспериментальная и клиническая фармакология. 2013. Т. 76, № 3. C. 35-37.
4. Игнатьев И.В., Коман И.Э., Сычев Д.А., Казаков Р.Е., Фалынскова И.Н., Кукес В.Г. Сравнительный анализ распределения частот генотипов полиморфного маркера С3434Т гена MDRI, кодирующего транспортер лекарственных средств гликопротеин-P. // Материалы 5-ой Международной конференции «Клинические исследования лекарственных средств». - 2005. С. 82-83.
5. Каркищенко Н.Н., Хоронько В.В., Сергеева С.А., Каркищенко В.Н. Фармакокинетика. Ростов н/Д: Феникс, 2001. - 384 с.
6. Катцунг Г.Б. Базисная и клиническая фармакология. - Санкт-Петербург: Невский Диалект, 1998. - Т.1. С. 73-68.
7. Кукес В.Г. Клиническая фармакокинетика: теоретические, прикладные и аналитические аспекты: руководство. Москва: ГЭО- ТАР-МЕД, 2009. - 432 с.
8. Сычев Д.А., Аникин Г.С., Александрова Е.К. и др. Фармакокинетическое взаимодействие лекарственных средств с фруктовым и соками. Клиническое значение. // Клиническая фармакология и фармакоэкономика. 2008.Т.1, №2. С. 57-67.
9. Филимонова А.А., Зиганшина Л.Е., Чичиров А.А. Определение активности изоферментов системы цитохрома P450 1А2, 2Е1, 3А4 с использованием кофеина в качестве тест-субстрата. // Ведомости научного центра экспертизы средств медицинского применения, 2007. №4, С. 43-44.
10. Хабриев Р.У., Чучалин А.Г., Зиганшина Л.Е. Лекарственные средства (справочное издание). Москва: ГЭОТАР-МЕДИА, 2005. - 563 с.
11. Amchin J., Zarycranski W., Taylor K.P., et al. Effect of venlafaxine on CYP1A2-dependent pharmacokinetics and metabolism of caffeine. // J Clin Pharmacol., 1999, Vol. 39, №3, P. 252-259.
12. Arnaud M.J., Welsch C. Caffeine metabolism in human subjects. In: Proceedings of the ninth international colloquium on science and technology of coffee. // Ninth International Colloquium on Science and Technology of Coffee. London:Association Scientifique Internationale du Cafe, London. - 1980, P. 385-395.
13. Arnaud M.J. Comparative metabolic disposition of [1-Me14C] caffeine in rats, mice, and Chinese hamsters. // Drug Metab. Dispos., 1985, Vol. 13, №4. P. 471-478.
14. Arnaud M.J. Identification, kinetic and quantitative study of [2-14C] and [1-Me-14C] caffeine metabolites in rat’s urine by chromatographic separations. // Biochem. Med., 1976, Vol. 16,№1, P. 67-76.
15. Arnaud M.J. The pharmacology of caffeine. // Prog. Drug Res., 1987, Vol. 31, P. 273-313.
16. Arold G., Donath F., Maurer A., et al. No relevant interaction with alprazolam, caffeine, tolbutamide, and digoxin by treatment with a low- hyperforin St John’s wort extract. // Planta Med., 2005, Vol.71, №4. P. 331-337.
17. Backman J.T., Karjalainen M.J., Neuvonen M., et al. Rofecoxib is a potent inhibitor of cytochrome P450 1A2: studies with tizanidine and caffeine in healthy subjects. // Br. J. Clin. Pharmacol., 2006, Vol. 62, №3, P. 345-347.
18. Baldwin S.J., Bloomer J.C., Smith G.J., et al. Ketoconazole and sulphaphenazole as the respective selective inhibitors of P4503A and 2C9. // Xenobiotica, 1995, Vol. 25, №3, P. 261-270.
19. Begas E., Kouvaras E., Tsakalof A., et al. In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios. // Biomed, Chromatogr., 2007, Vol. 21, №2, P. 190-200.
20. Berthou F., Flinois J.P., Ratanasavanh D., et al. Evidence for the involvement of several cytochromes P-450 in the first steps of caffeine metabolism by human liver microsomes. // Drug Metab. Dispos., 1991. Vol. 19, №3, P. 561-567.
21. Berthou F., Guillois B., Riche C., et al. Interspecies variations in caffeine metabolism related to cytochrome P4501A enzymes. // Xenobiotica, 1992, Vol. 22, №6, P. 671-680.
22. Bienvenu T., Pons G., Rey E., et al. Effect of growth hormone on caffeine metabolism in hypophysectomized rats. // Drug Metab. Dispos., 1990, Vol. 18, №3, P. 327-330.
23. Bonati M., Latini R., Galletti F., et al. Caffeine disposition after oral doses. // Clin. Pharmacol. Ther., 1982, Vol. 32, №1. P. 98-106.
24. Bonati M., Latini R., Tognoni G., et al. Interspecies comparison of in vivo caffeine pharmacokinetics in man, monkey, rabbit, rat, and mouse. // Drug Metab. Rev., 1985, Vol. 15, №7, P. 1355-1383.
25. Bortolotti A., Jiritano L., Bonati M. Pharmacokinetics of paraxanthine, one of the primary metabolites of caffeine, in the rat. // Drug Metab. Dispos., 1985, Vol.13, №2. P. 227-231.
26. Brazier J.L., Descotes J., Lery N., Ollagnier M., Evreux J.C. Inhibition by idrocilamide of the disposition of caffeine. // Eur. J. Clin. Pharmacol., 1980, Vol. 17, №1, P. 37-43.
27. Brosen K., Skjelbo E., Rasmussen B.B., et al. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. // Biochem. Pharmacol., 1993,Vol. 45, №6, P. 1211-1214.
28. Busto U., Bendayan R., Sellers E.M. Clinical pharmacokinetics of non-opiate abused drugs. // Clin. Pharmacokinet., 1989, Vol. 16, №1, P. 1-26.
29. Buters J.T., Tang B.K., Pineau T., et al. Role of CYP1A2 in caffeine pharmacokinetics and metabolism: studies using mice deficient in CYP1A2. // Pharmacogenetics, 1996, Vol. 6, №4, P. 291?296.
30. Butler M.A., Iwasaki M., Guengerich F.P., Kadlubar F.F. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. // Proc. Nat. Acad. Sci. USA., 1989, Vol. 86, №20, P. 7696-7700.
31. Campbell M.E., Grant D.M., Inaba T., Kalow W. Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes. // Drug Metab. Dispos., 1987, Vol. 15, №2, P. 237-249.
32. Carrillo J., Christensen M. et al. Evaluation of Caffeine as an In Vivo Probe for CYP1A2 Using Measurements in Plasma, Saliva, and Urine. // Ther. Drug Monit., 2000, Vol. 22, №4, P. 409-417.
33. Carrillo J.A., Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medication. // Clin. Pharmacokinet., 2000, Vol. 39, №2, P. 127-153.
34. Chen Y., Tu J.H., He Y.J., et al. Effect of sodium tanshinone II A sulfonate on the activity of CYP1A2 in healthy volunteers. // Xenobiotica, 2009, Vol. 39, №7, P. 508-513.
35. Chou T.M., Benowitz N.L. Caffeine and coffee: effects on health and cardiovascular disease. // Comp. Biochem. Physiol., 1994, Vol. 109, №2. P. 173-189.
36. Choudhary D., Jansson I., Schenkman J.B., et al. Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. // Arch. Biochem. Biophys., 2003, Vol. 414, №1, P. 91-100.
37. Chung W.G., Roch H.K., Kim H.M., Cha Y.N. Involvement of CYP3A1, 2B, and [2E1] in C-8 hydroxylation and CYP1A2 and flavin-containing monooxygenase in N-demethylation of caffeine; identified by using inducer treated rat liver microsomes that are characterized with testosterone metabolic patterns. // Chem. Biol. Int., 1998, Vol. 113, №1, P. 1-14.
38. Chang W.G., Cha Y.N. Oxidation of caffeine to theobromine and theophylline is catalyzed primarily by flavincontaining monooxygenase in liver microsomes. // Biochem. Biophys. Res. Commun., 1997, Vol. 235, №3. P. 685-688.
39. Cysneiros R.M., Farkas D., Harmatz J.S. Pharmacokinetic and pharmacodynamic interactions between zolpidem and caffeine. // Clin. Pharmacol. Ther., 2007, Vol. 82, №1, P. 54-62.
40. Dahl M.L. Cytochrome P450 phenotyping/genotyping in patients receiving antipsychotics useful aid to prescribing. // Clin. Pharmacokinet., 2002, Vol. 41, P. 453-470.
41. Darwish M., Kirby M., Robertson P.Jr., et al. Interaction profile of armodafinil with medications metabolized by P enzymes 1A2, 3A4 and 2C19 in healthy subjects. // J. Clin. Pharmacokinet., 2008, Vol. 47. №1, P. 61-74.
42. Dobrinas M., Cornuz J., Eap C.B. Pharmacogenetics of CYP1A2 activity and inducibility in smokers and exsmokers. // Pharmacogenet. Genomics., 2013, Vol. 23, №5, P. 286-292.
43. Donovan J.L. A primer on Caffeine Pharmacology and Its Drug Interactions in Clinical Psychopharmacology. // Psychopharmacol. Bulletin, 2001, Vol. 35, №3, P. 30?48.
44. van Troostwijk L.J. Doude, Koopmans R.P., Vermeulen H.D., et al. CYP1A2 activity is an important determinant of clozapine dosage in schizophrenic patients. // Eur. J. Pharm. Sci., 2003a, Vol. 20, № 4-5. P. 451-457.
45. Edwards R.J., Murray B.P., Murray S., et al. Contribution of CYP1A1 and CYP1A2 to the activation of heterocyclic amines in monkeys and human. // Carcinogenesis, 1994, № 15, P. 829-836.
46. Fontana R.J., deVries T.M., Woolf T.F., et al. Caffeine based measures of CYP1A2 activity correlate with oral clearance of tacrine in patients with Alzheimer’s disease. // Br. J. Clin. Pharmacol., 1998, Vol. 46, №3, P. 221-228.
47. Fredholm B.B. Methylxanthines. Berlin: Springer Werlag, 2011. - 566 p.
48. Frye R.F., Matzke G.R., Adedoyin A., et al. Validation of the five-drug “Pittsburgh cocktail” approach for assessment of selective regulation of drug metabolizing enzymes. // Clin. Pharmacol. Ther., 1997, Vol. 62, №3, P. 365-376.
49. Fuhr U., Doehmer J., Battula N., et al. Biotransformation of caffeine and theophylline in mammalian cell lines genetically engineered for expression of single cytochrome P450 isoforms. // Biochem. Pharmacol., 1992, Vol. 43, №2, P. 225-235.
50. Graham R.A., Downey A., Mudra D., et al. In vivo and in vitro induction of cytochrome P450 enzymes in beagle dogs. // Drug Metab. Dispos., 2002. Vol. 30, №6, P. 3206-1213.
51. Granfors M.T., Backman J.T., Neuvonen M., et al. Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2- mediated presystemic metabolism. // Clin. Pharmacol. Ther., 2004, Vol. 76, №6, P. 598-606.
52. Grant D.M., Campbell M.E., Tang B.K., Kalow W.W. Biotransformation of caffeine by microsomes from human. Liver kinetics and inhibition studies. // Biochem. Pharmacol., 1987, Vol. 36, №8, P. 1251-1260.
53. Gu L., Gonzalez F.Z., Kalow W., et al. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. // Pharmacogenetics, 1992, Vol. 2, №2, P. 73-77.
54. Guengerich F.P., Turvy C.G. Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. // J. Pharmacol. Exp. Ther., 1991, Vol. 256, №3, P. 1189-1194.
55. Guo L.Q., Taniguchi M., Chen Q.Y., et al. Inhibitory potential of herbal medicines on human cytochrome P450-mediated oxidation: properties of umbelliferous or citrus crude drugs and their relative prescriptions. // Jpn. J. Pharmacol., 2001, Vol. 85, №4, P. 399-408.
56. Ingelman-Sundberg M. Human drug metabolizing cytochrome P450 enzymes’ properties and polymorphisms. Naunyn-Schmiedeberg’s. // Arch Pharmacol., 2004, Vol. 369, P. 89-104.
57. James J.F. Caffeine and Health. London: Academic Press, London, 1994. - 432 p.
58. Jeppesen U., Loft S., Poulsen H.E., Br?sen K. A fluvoxamine-caffeine interaction study. // Pharmacogenetics, 1996, Vol. 6, №3, P. 213-222.
59. Kalow W., Tang B.K. The use of caffeine for enzyme assays: a critical appraisal. Clin. Pharmacol. Ther., 1993, Vol. 53, №5, P. 503-514.
60. Kaplan G.B., Greenblatt D.J., Ehrenberg B.L., et al. Dose-dependent pharmacokinetics and psychomotor effects of caffeine in humans. // Clin. Pharmacol., 1997, Vol. 37, №8, P. 693-703.
61. Kinzig-Schippers M., Fuhr U., Zaigler M., et al. Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2. // Clin. Pharmacol. Ther., 1999, Vol. 65, №3, P. 262-274.
62. Kot M., Daniel W.A. Effect of cytochrome P450(CYP) inducers on caffeine metabolism in the rat. // Pharmacological Reports, 2007, Vol. 59, №3, P. 296-305.
63. Kot M., Daniel W.A. Caffeine as a marker substrate for testing cytochrome P450 activity in human and rat. // Pharmaco. Rep., 2008, Vol. 60, №6, P.789-797.
64. Kot M., Daniel W.A. Relative contribution of rat cytochrome P450 isoforms to the metabolism of caffeine: The pathway and concentration dependence. // Biochem. Pharmacol., 2008, Vol. 75, №7, P. 1538-1549.
65. Krul C., Hageman G. Analysis of urinary caffeine metabolites to assess biotransformation enzyme activities by reversed-phase high-performance liquid chromatography. // Journal of Chromatography B., 1988, Vol.709, №1. P. 27-34.
66. Landi M.T., Sinha R., Lang N.P., et al. Human cytochrome P4501A2// IARC Sci Publ., 1999, № 148, P. 173-195.
67. C.E. Lau, F. Ma, J.L. Falk. Oral and IP caffeine pharmacokinetics under a chronic foodlimitation condition. // Pharmacol. Biochem. Behav., 1995, Vol. 50, №2, P. 245-252.
68. Lee D.Y., Shin H.S., Bae S.K. et al. Effects of Enzyme Inducers and Inhibitors on the Pharmacokinetics of Intravenous Omeprazole in Rats. // Biopharm. Drug Dispos., 2006, Vol. 27, №5, P.209-218.
69. Lee G., Dallas S., Hong M., et al. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. // Pharmacol. Rev., 2001, Vol. 53, №4, P.569-596.
70. Lelo A., Birkett D.J., Robson R.A., et al. Comparitive pharmacokinetics of caffeine and its primary deethylated metabolites paraxanthine, theobromine and theophylline in man. // Br. J. Clin. Pharmacol., 1986, Vol. 22, №2, P. 177-182.
71. Lelo A., Miners J.O., Robson R.A., et al. Quantitative assessment of caffeine partial clearances in man. // Br. J. Clin. Pharmacol., 1986, Vol. 22, №2, P. 183-186.
72. Lewis D.V.F. Substrate specifity and metabolism in cytochrome P450. Structure, Function and Mechanism. - Bristol, 1996. - P. 115-167.
73. Maish W.A., Hampton E.M., Whitsett T.L., et al. Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics. // Pharmacotherapy, 1996, Vol. 16, №6, P. 1046-1052.
74. McCall A.L., Millington W.R., Wurtman R.J. Blood-brain barrier transport of caffeine: dose-related restriction of adenine transport. // Life Sci., 1982, Vol.31, №24, P. 2709-2715.
75. McNamara P.J., Burgio D., Yoo S.D. Pharmacokinetics of caffeine and its demethylated metabolites in lactating adult rabbits and neonatal offspring. Predictions of breast milk to serum concentration ratios. // Drug Metab. Dispos., 1992, Vol. 20, №2, P. 302-308.
76. Miners J.O., Birkett D.J. The use of caffeine as a metabolic probe for human drug metabolizing enzymes. // Gen. Pharmacol., 1996, Vol. 27, №2, P. 245-249.
77. Moore L.B., Goodwin B., Jones S.A., et al. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. // Proc. Nat. Acad. Sci. USA., 2000, Vol. 97, №13, P. 7500-7502.
78. Morita K., Maeda Y., Masuda M., et al. Strain differences in CYP3A-mediated C-8 hydroxylation (1,3,7-trimethyluric acid formation) of caffeine in Wistar and Dark Agouti rats. // Biochem. Pharmacol., 1998, Vol. 55, №9, P. 1405-1411.
79. Offman E.M., Freeman D.J., Dresser G.K., et al. Red wine-cisapride interaction: comparison with grapefruit juice. // Clin. Pharmacol. Ther., 2001, Vol. 70, №1, P.17-23.
80. Oh K.S., Park S.J., Shinde D.D., et al. High-sensitivity liquid chromatography-tandem mass spectrometry for the simultaneous determination of five drugs and their cytochrome P450-specific probe metabolites in human plasma. J. Chromatogr. // B Analyt. Technol. Biomed. Life Sci., 2012, Vol. 895-896, P. 56-64.
81. Pelissier-Alicot A.L., Schreiber-Deturmeny E., Simon N., et al. Time-of-day dependent pharmacodynamic and pharmacokinetic profiles of caffeine in rats. // Naunyn Schmiedebergs Arch. Pharmacol., 2002, Vol. 365, №4. P.318-325.
82. Perera V., Gross A.S., McLanchlan A.J. Measurement of CYP1A2 activity: a focus on caffeine as a probe. // Curr. Drug Metab., 2012, Vol. 13, №5, P. 667-678.
83. Radhofer-Welte S. Pharmacokinetics and metabolism of the proton pump inhibitor pantoprazole in man. // Drugs Today, 1999, Vol. 35, №10, P. 765-772.
84. Rasmussen B.B., Brix T.H., Kyvik K.O., et al. The differences in the 3-demethylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. // Pharmacogenetics, 2002, Vol. 12, №6, P. 473-478.
85. Rebbek T.R., Jaffe J.M., Walker A.H., et al. Modification of clinical presentation of prostate tumors by novel genetic variant in CYP3A4. // J. Nat. Cancer Inst., 1998, Vol. 91, №12, P. 1225-1229.
86. Robson R.A. The effects of quinolones on xanthine pharmacokinetics. // Am. J. Med., 1992, Vol. 92,№ 4A, P. 22-25.
87. Rodopoulos N., Norman A. Assessment of dimethylxanthine formation from caffeine in healthy adults: comparison between plasma and saliva concentrations and urinary excretion of metabolites. // Scand. J. Clin. Lab. Invest.,1996, Vol. 56, №3, P. 259-268.
88. Sakuma T., Hieda M., Igarashi T., et al. Molecular cloning and functional analysis of cynomolgus monkey CYP1A2. // Biochem. Pharmacol., 1998, Vol. 56, №1, P.131-139.
89. Sawynok J., Yaksh T.L. Caffeine as an analgesic adjuvant: a review of pharmacology and mechanisms of action. // Pharmacol. Rev., 1993, Vol. 45, №1, P. 43-85.
90. Schmider J., Brockmoller J., Arold G., et al. Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine. // Pharmacogenetics, 1999, Vol. 9, № 6, P. 725-734.
91. Shrader E., Klaunick G., Jorritsma U., et al. High-performance liquid chromatographic method for simultaneous determination of [1-methyl- 14C]caffeine and its eight major metabolites in rat urine. // J. Chromatogr. B Biomed. Sci. Appl., 1999, Vol. 726, №1-2, P. 195-201.
92. Sharer J.E., Shipley L.A., Vandenbranden M.R., et al. Comparisons of phase I and phase II in vitro hepatic enzyme activities of human, dog, rhesus monkey, and cynomolgus monkey. // Drug Metab. Dispos., 1995, Vol. 23, №11, P. 1231-1241.
93. Shimada T., Martin M.V., Pruess-Schwartz D., et al. Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a) pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. // Cancer Res., 1989, Vol. 49. P. 6304-6312.
94. Spigset O., Hagg S., Soderstrom E., Dahlqvist R. Lack of correlation between fluvoxamine clearance and CYP1A2 activity as measured by systemic caffeine clearance. // Eur. J. Clin. Pharmacol., 1999, Vol. 54, №12, P. 943-946.
95. Sugawara M., Mochizuki T., Takekuma Y., et al. Structure-affinity relationship in the interactions of human organic anion transporter 1 with caffeine, theophylline, theobromine and their metabolites. // Biochem. Biophys. Acta, 2005, Vol. 1714, №2, P. 85-92.
96. Tanaka K., Hara M. Inverse association between coffee drinking and the risk of hepatocellular carcinoma: a case-control study in Japan. // Cancer Sci., 2007, Vol. 98, №2, P. 214-218.
97. Teekachunhatean S., Tosri N., Rojanasthien N., et al. Pharmacokinetics of Caffeine following a Single Administration of Coffee Enema versus Oral Coffee Consumption in Healthy Male Subjects. // Epub. 2013, Vol. 2013 - 7 p.
98. Testa B., Kramer S.D. The Biochemistry of drug metabolism: Conjugations, Consequances of Metabolism, Influencing Factors/ - Weinheim: WILEY-VCH, 2010. - Vol.2. - 588 p.
99. Vaynshteyn D., Jeong H. Caffeine induces CYP1A2 expression in rat hepatocytes but not in human hepatocytes. // Drug Metab. Lett., 2012, Vol. 6, №2, P. 116-119.
100. Vickroy T.W., Chang S.K., Chou C.C. Caffeine-induced hyperactivity in the horse: comparisons of drug and metabolite concentrations in blood and cerebrospinal fluid. // J. Vet.Pharmacol. Ther., 2008, Vol. 31, №2, P. 156-166.
101. Walton K., Dorne J.L., Renwick A.G. Uncertainty factors for chemical risk assessment: interspecies differences in the in vivo pharmacokinetics and metabolism of human CYP1A2 substrates. // Food Chem. Toxicol., 2001, Vol. 39, №7, P. 667-680.
102. Wilkinson J.M., Pollard I. Accumulation of theophylline, theobromine and paraxanthine in the fetal rat brain following a single oral dose of caffeine. // Brain Res. Dev. Brain Res., 1993, Vol. 75, №2, P. 193-199.
103. Yang A., Palmer A.A., de Witt H. Genetics of caffeine consumption and responses to caffeine. // Psychopharmacology (Berl)., 2010, Vol. 211, №3, P. 245-257.
104. Yu K.S., Yim D.S., Cho J.Y. et al. Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. // Clin. Pharmacol. Ther., 2001, Vol. 69, №4, P. 266-273.
105. Zuber R., Anzenbacherova E., Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism. // J. Cell Mol. Med., 2002, Vol. 6, №2, P. 189-198.
Review
For citations:
Novickaya Y.G., Zherdev V.P., Viglinskaya A.O., Litvin A.A. Isoform CYP1A2, as a part of the cytochrome P450 superfamily. Pharmacokinetics and Pharmacodynamics. 2014;(1):4-13. (In Russ.)