Translocator protein TSPO 18 kDa and its ligands: a promising approach to the creation of new neuropsychotropic drug
https://doi.org/ 10.24411/2587-7836-2018-10026
Abstract
About the Authors
G. V. MokrovRussian Federation
O. A. Deeva
Russian Federation
M. A. Yarkova
Russian Federation
T. A. Gudasheva
Russian Federation
S. B. Seredenin
Russian Federation
References
1. Papadopolous V, Baraldi M, Guilarte TR, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci. 2006;27(8):402–409. DOI: 10.1016/j.tips.2006.06.005
2. Jaremko L, Jaremko M, Giller K, et al. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science. 2014;343:1363 1366. DOI: 10.1126/science.1248725
3. Li F, Liu J, Liu N, et al. Translocator protein 18 kDa (TSPO): an old protein with new functions? Biochemistry. 2016;24;55(20):2821–2831. DOI: 10.1021/acs.biochem.6b00142
4. Jaremko L, Jaremko M, Giller K, et al. Conformational Flexibility in the Transmembrane Protein TSPO. Chemistry-A European Journal. 2015;9;21(46):16555–16563. DOI: 10.1002/chem.201502314
5. Guo YZ, Kalathur RC, Liu Q, et al. Structure and activity of tryptophanrich TSPO proteins. Science. 2015;30;347(6221):551–555.DOI: 10.1126/science.aaa1534
6. Li F, Liu J, Zheng Y, et al. Crystal structures of translocator protein (TSPO) and mutant mimic of a human polymorphism. Science. 2015;30;347(6221):555–558. DOI: 10.1126/science.1260590
7. Korkhov VM, Sachse C, Short JM, et al. Three-dimensional structure of TSPO by electron cryomicroscopy of helical crystals. Structure. 2010;9;18(6):677–687. DOI: 10.1016/j.str.2010.03.001
8. Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/ interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–4997. DOI: 10.1210/endo.139.12.6390
9. Owen DR, Gunn RN, Rabiner EA, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J. Nucl. Med. 2011;52:24–32. DOI: 10.1007/s40336-015-0141-z
10. Owen DR, Lewis AJ, Reynolds R, et al. Variation in binding affinity of the novel anxiolytic XBD173 for the 18 kDa translocator protein in human brain. Synapse. 2011;65:257–259. DOI: 10.1002/syn.20884
11. Owen DR, Yeo AJ, Gunn RN, et al. An 18-kDa translocator protein (TSPO)polymorphism explains differences in binding affinity of the PET radioligand PBR28.J. Cereb. Blood Flow Metab. 2012;32:1–5. DOI: 10.1038/jcbfm.2011.147
12. Lacapere JJ, Papadopoulos V. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids 2003; 68:569–585.DOI: 10.1016/s0039-128x(03)00101-6
13. Casellas P, Galiegue S, Basile AS. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem. Int. 2002;40:475–486.DOI: 10.1016/S0197-0186(01)00118-8
14. Gavish M, Bachman I, Shoukrun R, et al. Enigma of the peripheral benzodiazepine receptor. Pharmacol. Rev. 1999;51:629–650.
15. Anholt RR, Murphy KM, Mack GE, et al. Peripheral-typebenzodiazepine receptors in the central nervous system: localization to olfactory nerves. J. Neurosci. 1984;4:593–603.DOI .org/10.1523/jneurosci.04-02-00593.1984
16. Bolger GT, Mezey E, Cott J, et al. Differential regulation of 'central' and 'peripheral' benzodiazepine binding sites in the rat olfactory bulb. Eur. J. Pharmacol. 1984;105:143–148. DOI .org/10.1016/0014-2999(84)90658-7
17. Jayakumar AR, Panickar KS, Norenberg MD. Effects on free radical generation by ligands of the peripheral benzodiazepine receptor in cultured neural cells. J. Neurochem. 2002;83:1226–1234.DOI: 10.1046/j.1471-4159.2002.01261.x
18. Karchewski LA, Bloechlinger S, Woolf CJ. Axonal injury-dependent induction of the peripheral benzodiazepine receptor in small-diameter adult rat primary sensory neurons. Eur. J. Neurosci. 2004;20:671–683.DOI: 10.1111/j.1460-9568.2004.03530.x
19. Papadopoulos V, Amri H, Boujrad N, et al. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids. 1997;62:21–28. DOI .org/10.1016/s0039-128x(96)00154-7
20. Hirsch JD, Beyer CF, Malkowitz L, et al. Mitochondrial benzodiazepine receptors mediate inhibition of mitochondrial respiratory control. Mol. Pharmacol. 1989;35:157–163.
21. Corsi L, Geminiani E, Baraldi M. Peripheral benzodiazepine receptor(PBR) new insight in cell proliferation and cell differentiation review. Curr. Clin. Pharmacol. 2008;3:38–45. DOI .org/10.2174/157488408783329878
22. Veenman L, Papadopoulos V, Gavish, M. Channellike functions of the 18-kDa translocator protein (TSPO): regulation of apoptosis and steroidogenesis as part of the host-defense response. Curr. Pharm. Des. 2007;13:2385–2405. DOI: 10.2174/138161207781368710
23. Papadopoulos V, Liu J, Culty M. Is there a mitochondrial signaling complex facilitating cholesterol import. Mol. Cell Endocrinol. 2007;269:59–64. DOI: 10.1016/j.mce.2006.12.004
24. Jamin N, Neumann JM, Ostuni MA, et al. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol. Endocrinol. 2005;19:588–594.DOI: 10.1210/me.2004-0308
25. Murail S, Robert JC, Coic YM, et al. Secondary and tertiary structures of the transmembrane domains of the translocator protein TSPO determined by NMR. Stabilization of the TSPO tertiary fold upon ligand binding. Biochim. Biophys. Acta. 2008;1778:1375–1381.DOI: 10.1016/j.bbamem.2008.03.012
26. Papadopoulos V, Aghazadeh Y, Fan J, et al. Translocator proteinmediated pharmacology of cholesterol transport and steroidogenesis. Molecular and Cellular Endocrinology. 2015;408:90–98. DOI: 10.1016/j.mce.2015.03.014
27. Rone MB, Midzak AS, Issop L, et al. Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. Mol. Endocrinol. 2012; 26:1868–1882. DOI: 10.1210/me.2012–1159
28. Rupprecht R, Papadopoulos V, Rammes G, et al. Translocator protein (18 kDa)(TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat. rev. Drug discov. 2010;9(12):971–988. DOI: 10.1038/nrd3295
29. Bordet T, Buisson B, Michaud M, et al. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J. Pharmacol. Exp. Ther. 2007;322(2):709–720. DOI .org/10.1124/jpet.107.123000
30. Snyder SH, Verma A, Trifiletti RR. The peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands. FASEB J. 1987;1(4):282–288.DOI .org/10.1096/fasebj.1.4.2820823
31. Verma A, Nye JS, Snyder SH. Porphyrins are endogenous ligands for the mitochondrial (peripheral-type) benzodiazepine receptor. PNAS. 1987;84(8):2256–2260. DOI: org/10.1073/pnas.84.8.2256
32. Verma A, Snyder SH. Peripheral type benzodiazepine receptors. Ann. Rev. Pharmacol. Toxicol. 1989;29:307–322. DOI .org/10.1146/annurev.pharmtox.29.1.307
33. Guidotti A, Forchetti CM, Corda MG, et al. Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on BDZ receptors. PNAS 1983;80:3531–3533.DOI .org/10.1073/pnas.80.11.3531
34. Bovolin P, Schlichting J, Miyata J, et al. Distribution and characterization of diazepam binding inhibitor (DBI) in peripheral tissues of rat. Regul. Peptides. 1990;29:267–281. DOI: 10.1016/0167-0115(90)90089-f
35. Ferrero P, Santi MR, Conti-Tronconi B, et al. Study of an octadecaneuropeptide derived from diazepam binding inhibitor (DBI): biological activity and presence in rat brain. PNAS. 1986;83:827–831. DOI: 10.1073/pnas.83.3.827
36. Slobodyansky E, Guidotti A, Wambebe C, et al. Isolation and characterization of a rat brain triakontatetraneuropeptide, a posttranslational product of diazepam binding inhibitor: specific action at the Ro5-4864 recognition site. J Neurochem. 1989;53:1276–1284.DOI: 10.1111/j.1471-4159.1989.tb07425.x
37. Papadopoulos V, Berkovich A, Krueger KE, et al. Diazepam binding inhibitor and its processing products stimulate mitochondrial steroid biosynthesis via an interaction with mitochondrial benzodiazepine receptors. Endocrinology. 1991;129(3):1481–1488. DOI .org/10.1210/endo-129-3-1481
38. Li H, Degahardt B, Tobin D, et al. Identification, localization, and function in steroidogenesis of PAP7: a peripheral-type benzodiazepine receptorand PKA (RIalpha)-associated protein. Mol. Endocrinology. 2001;15:2211–2228. DOI .org/10.1210/me.15.12.2211
39. Fan J, Liu J, Culty M, et al. Acylcoenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog. Lipid. Res. 2010;49:218–234. DOI: 10.1016/j.plipres.2009.12.003
40. Liu J, Rone MB, Papadopoulos V. Protein–protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J. Biol. Chem. 2006;281:38879–38893. DOI: 10.1074/jbc.M608820200
41. Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H) diazepam binding. PNAS 1977;74:3805–3809. DOI .org/10.1073/pnas.74.9.380
42. Gavioli EC, Duarte FS, Bressan E, et al. Antidepressant-like effect of Ro5-4864, a peripheral-type benzodiazepine receptor ligand, in forced swimming test. Eur. J. Pharmacol. 2003;471:21–26.DOI .org/10.1016/s0014-2999(03)01789-8
43. Barron AM, Garcia-Segura LM, Caruso D, et al. Ligand for translocator protein reverses pathology in a mouse model of Alzheimer's disease. J. Neurosci. 2013;33(20):8891–8897.DOI: 10.1523/JNEUROSCI.1350-13.2013
44. Mills C, Makwana M, Wallace A, et al. Ro5-4864 promotes neonatal motor neuron survival and nerve regeneration in adult rats. Eur. J. Neurosci. 2008;27:937–946. DOI: 10.1111/j.1460-9568.2008.06065.x
45. Leonelli E, Yague JG, Ballabio M, et al. Ro5-4864, a synthetic ligand of peripheral benzodiazepine receptor, reduces aging-associated myelin degeneration in the sciatic nerve of male rats. Mechanisms of Ageing and Development. 2005;126:1159–1163. DOI: 10.1016/j.mad.2005.06.001
46. Soustiel J.F, Zaaroor M, Vlodavsky E, et al. Neuroprotective effect of Ro5-4864 following brain injury. Exp. Neurol. 2008;214:201–208.DOI: 10.1016/j.brainres.2008.04.078
47. Veiga S, Azcoitia I, Garcia-Segura, LM. Ro5-4864, a peripheral benzodiazepine receptor ligand, reduces reactive gliosis and protects hippocampal hilar neurons from kainic acid excitotoxicity. J. Neurosci. Res. 2005;80:129–137. DOI: 10.1002/jnr.20430
48. Giatti S, Pesaresi M, Cavaletti G, et al. Neuroprotective effects of a ligand of translocator protein-18 kDa (Ro5-4864) in experimental diabetic neuropathy. Neuroscience. 2009;164: 520–529.DOI: 10.1016/j.neuroscience.2009.08.005
49. Le Fur G, Perrier ML, Vaucher N, et al. Peripheral benzodiazepine binding sites: effect of PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1methylpropyl)-3-isoquinolinecarboxamide. Life Sciences. 1983;32(16): 1839-1847. DOI .org/10.1016/0024-3205(83)90062-0
50. Selleri S, Bruni F, Costagli C, et al. 2-Arylpyrazolo[1,5-a]pyrimidin3-ylacetamides. New potent and selective peripheral benzodiazepine receptor ligands. Bioorg. Med. Chem. 2001;9: 2661–2671.DOI .org/10.1016/s0968-0896(01)00192-4
51. Li-Ming Zhang, Nan Zhao, Wen-Zhi Guo, et al. Antidepressant-like and anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa). Neuropharmacology. 2014;81:116–125.DOI: 10.1016/j.neuropharm.2013.09.016
52. Li-Ming Zhang, Zhi-Kun Qiu, Nan Zhao, et al. Anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in animal models of post-traumatic stress disorder. Int. J. Neuropsychopharmacol. 2014;17:1659–1669. DOI: 10.1017/S1461145714000479
53. Kozikowski AP, Brewer J, Sun S, et al. Chemistry, binding affinities, and behavioral properties of a new class of "antineophobic" mitochondrial DBI receptor complex (mDRC) ligands. J. Med. Chem. 1993;36:2908–2920. DOI .org/10.1021/jm00072a010
54. Kita A, Kohayakawa H, Kinoshita T, et al. Antianxiety and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand. British Journal of Pharmacology. 2004;142:1059–1072. DOI .org/10.1038/sj.bjp.0705681
55. Zivkovic B, Morel E, Joly D, et al. Pharmacological and behavioral profile of alpidem as an anxiolytic. Synthelabo Recherche, L.E.R.S., Bagneux, France.1990;23S.3:108–113. DOI: 10.1055/s-2007-1014545
56. Kaplan JP, George P. US Patent 4382938 A, 1983.
57. Langer SZ, Arbilla S, Benavides J, et al. Zolpidem and alpidem: two imidazopyridines with selectivity for omega 1and omega 3-receptor subtypes. Adv. Biochem. Psychopharmacol.1990;46:61–72.
58. Bourguignon JJ. Endogenous and synthetic ligands of mitochondrial benzodiazepine receptors: structure-affinity relationships. In Peripheral benzodiazepine receptors. Giesen-Crouse, E.; Ed.; Academic Press: London; 1993. p. 59–85.
59. Barki J, Larrey D, Pageaux G, et al. Fatal subfulminant hepatitis during treatment with alpidem (Ananxyl). Gastroenterol. Clin. Biol. 1993;17:872–874.
60. Baty V, Denis B, Goudot B, et al. Hepatitis induced by alpidem (Ananxyl). Four cases, one of them fatal. Gastroenterol. Clin. Biol. 1994;18:1129–1131.
61. Ausset P, Malavialle P, Vallet A, et al. Subfulminant hepatitis caused by alpidem and treated by liver transplantation. Gastroenterol. Clin. Biol. 1995;19:222–223.
62. Fiorini I, Nacci V, Ciani SM, et al. Novel ligands specific for mitochondrial benzodiazepine receptors: 6-arylpyrrolo[2,1-d][1,5] benzothiazepine derivatives. Synthesis, structure-acivity relationships, and molecular modelling studies. J. Med. Chem. 1994;37:1427–1438.DOI .org/10.1021/jm00036a007
63. Greco G, Novellino E, Fiorini I, et al. Comparative molecular field analysis model for 6-arylpyrrolo[2,1-d][1,5]benzothiazepines binding selectively to the mitochondrial benzodiazepine receptor. J. Med. Chem. 1994;37:4100–4108. DOI .org/10.1021/jm00050a007
64. Campiani G, Nacci V, Fiorini I, et al. New pyrrolobenzothiazepine derivatives as molecular probes of the "peripheral-type" benzodiazepine receptor (PBR) binding site. Eur. J. Med. Chem. 1997;32:241–252.DOI .org/10.1016/s0223-5234(97)83975-x
65. Campiani G, Ramunno A, Fiorini I, et al. Synthesis of new molecular probes for investigation of steroid biosynthesis induced by selective interaction with peripheral type benzodiazepine receptors (PBR). J. Med. Chem. 2002;45:4276–4281. DOI .org/10.1021/jm020849l
66. Okuyama S, Chaki S, Yoshikawa R, et al. Neuropharmacological profile of peripheral benzodiazepine receptor agonists, DAA1097 and DAA1106. Life Sci. 1999;64:1455–1464.DOI .org/10.1016/s0024-3205(99)00079-x
67. Okubo T, Yoshikawa R, Chaki S, et al. Design, synthesis and structureactivity relationships of aryloxyanilide derivatives as novel peripheral benzodiazepine receptor ligands. Bioorg. Med. Chem. 2004;12:423–438. DOI .org/10.1016/j.bmc.2003.10.050.
68. Chaki S, Funakoshi T, Yoshikawa R, et al. Binding characteristics of [3H]DAA 1106, a novel and selective ligand for peripheral benzodiazepine receptors. Eur. J. Pharmacol. 1999; 371:197–204.DOI .org/10.1016/s0014-2999(99)00118-1
69. Briard E, Zoghbi SS, Siméon FG, et al. Single-step high-yield radiosynthesis and evaluation of a sensitive 18F-labeled ligand for imaging brain peripheral benzodiazepine receptors with PET. J. Med. Chem. 2009;52:688–699. DOI: 10.1021/jm8011855
70. Kita A, Furukawa K. Involvement of neurosteroids in the anxiolyticlike effects of AC-5216 in mice. Pharmacology, Biochemistry and Behavior. 2008:171–178. DOI: 10.1016/j.pbb.2007.12.006
71. Kita A, Kinoshita T, Kohayakawa H, et al. Lack of tolerance to anxiolysis and withdrawal symptoms in mice repeatedly treated with AC5216, a selective TSPO ligand. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2009;33:1040–1045. DOI:10.1016/j.pnpbp.2009.05.018.
72. Rupprecht R, Rammes G, Eser D, et al. Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science. 2009;325:490–493. DOI: 10.1126/science.1175055
73. Qiu ZK, Zhang LM, Zhao N, et al. Repeated administration of AC5216, a ligand for the 18 kDa translocator protein, improves behavioral deficits in a mouse model of post-traumatic stress disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2013; 45:40–46.DOI: 10.1016/j.pnpbp.2013.04.010
74. Wolf L, Bauer A, Melchner D, et al. Enhancing neurosteroid synthesis – relationship to the pharmacology of translocator protein (18 kDa) (TSPO) ligands and benzodiazepines. Pharmacopsychiatry. 2015;48:72–77. DOI: 10.1055/s-0034-1398507
75. Wang DS, Tian Z, Guo YY, et al. Anxiolytic-like effects of translocator protein (TSPO) ligand ZBD-2 in an animal model of chronic pain. Molecular Pain. 2015:11–16. DOI: 10.1186/s12990-015-0013-6
76. Li XB, Guo HL, Shi TY, et al. Neuroprotective effects of a novel translocator protein (18 kDa) ligand, ZBD2, against focal cerebral ischemia and NMDAinduced neurotoxicity. Clin Exp Pharmacol Physiol. 2015; 42(10):1068–1074. DOI: 10.1111/1440-1681.12460
77. Fukaya T, Kodo T, Ishiyama T, et al. Design, synthesis and structure– activity relationships of novel benzoxazolone derivatives as 18 kDa translocator protein (TSPO) ligands. Bioorg. & Med. Chem. 2012;20:5568–5582.DOI: 10.1016/j.bmc.2012.07.023
78. Anzini M, Capelli A, Vomero S, et al. Mapping and Fitting the peripheral benzodiazepine receptor binding site by carboxamide derivatives. comparison of different approaches to quantitative ligand-receptor interaction modeling. J. Med. Chem. 2001;44:1134–1150. DOI .org/10.1021/jm0009742
79. Cappelli A, Mohr GP, Gallelli A, et al. Structure-activity relationships in carboxamide derivatives based on the targeted delivery of radionuclides and boron atoms by means of peripheral benzodiazepine receptor ligands. J. Med. Chem. 2003;46:3568–3571. DOI: 10.1021/jm034068b
80. Castellano S, Taliani S, Viviano M, et al. Structure activity relationship refinement and further assessment of 4-phenylquinazoline-2-carboxamide translocator protein ligands as antiproliferative agents in human glioblastoma tumors. J. Med. Chem. 2014;57:2413–2428. DOI: 10.1021/jm401721h
81. Trapani G, Franco M, Ricciardi L, et al. Synthesis and binding affinity of 2-Phenylimidazo[1,2-a]pyridine derivatives for both central and peripheral benzodiazepine receptors. a new series of high-affinity and selective ligands for the peripheral type. J. Med. Chem. 1997;40:3109–3118.DOI .org/10.1021/jm970112+
82. Lentini G, Bourguignon JJ, Wermuth CG. Ligands of the peripheraltype benzodiazepine bindimg site (PBS): structureactivity relationships and computer-aided conformational analysis. In QASAR: Rational Approaches to the Design of Bioactive Compounds; Elsevier Science Publishers B.V.: Amsterdam; 1991. p. 257–260.
83. Tebib S, Bourguignon JJ, Wermuth CG. The active analogue approach applied to the pharmachophore identification of benzodiazepine receptor ligands. J. Comput.-Aided Mol. Des. 1987;1:153–170.DOI .org/10.1007/bf01676959
84. Serra M, Madau P, Chessa MF, et al. 2-phenylimidazo[1,2-a]pyridine derivatives as ligands for peripheral benzodiazepine receptors: stimulation of neurosteroid synthesis and anticonflict action in rats. British Journal of Pharmacology. 1999;127:177–187. DOI: 10.1038/sj.bjp.0702530
85. James ML, Fulton RR, Vercoullie J, et al. DPA-714, a new translocator protein–specific ligand: synthesis, radiofluorination, and pharmacologic characterization. Journal of Nuclear Medicine. 2008;49(5):814–822.DOI: 10.2967/jnumed.107.046151
86. Leaver KR, Reynolds A, Bodard S, et al. Effects of translocator protein (18 kDa) ligands on microglial activation and neuronal death in the quinolinicacid-injected rat striatum. ACS Chem. Neurosci. 2012;3:114–119.DOI: 10.1021/cn200099e
87. Romeo E, Auta J, Kozikowski A, et al. 2-Aryl-3-indoleacetamides (FGIN-1): a new class of potent and specific ligands for the mitochondrial DBI receptor (MDR). J. Pharmacol. and Exp. Ther. 1992;262:971–978.
88. Auta J, Romeo E, Kozikowski A, et al. Participation of mitochondrial diazepam binding inhibitor receptors in the anticonflict, antineophobic and anticonvulsant action of 2-aryl-3-indoleacetamide and imidazopyridine derivatives. J. Pharmacol. Exp. Ther. 1993;265:649–656.
89. Bitran D, Foley M, Audette D, et al. Activation of peripheral mitochondrial benzodiazepine receptors in the hippocampus stimulates allopregnanolone synthesis and produces anxiolytic-like effects in the rat. Psychopharmacology. 2000;151:64–71. DOI .org/10.1007/s002130000471
90. Da Settimo F, Simorini F, Taliani S, et al. Anxiolytic like effects of N,N-Dialkyl-2-phenylindol-3-ylglyoxylamides by modulation of translocator protein promoting neurosteroid biosynthesis. J. Med. Chem. 2008;51:5798–5806. DOI: 10.1021/jm8003224
91. Costa B, Da Pozzo E, Chelli B, et al. Anxiolytic properties of a 2-phenylindolglyoxylamide TSPO ligand: Stimulation of in vitro neurosteroid production affecting GABAA receptor activity. Psychoneuroendocrinology. 2011;36:463–472. DOI: 10.1016/j.psyneuen.2010.07.021
92. Liao Y, Kozikowski A, Guidotti A, et al. Synthesis and pharmacological evaluation of benzofuran-acetamides as "antineophobic" mitochondrial DBI receptor complex ligands. Bioorg. Med. Chem. 1998;8:2099–2102. DOI .org/10.1016/s0960-894x(98)00374-6
93. Ferzaz, B, Brault E, Bourliaud G, et al. SSR180575 (7-chloro-N, N, 5-trimethyl-4-oxo-3-phenyl-3, 5-dihydro-4H-pyridazino[4, 5-b]indole-1acetamide),a peripheral benzodiazepine receptor ligand, promotes neuronal survival and repair. J. Pharmacol. Exp. Ther. 2002;301: 1067–1078.DOI .org/10.1158/1538-7445.am2014-110
94. Anzini M, Cappelli A, Vomero S, et al. Molecular Basis of peripheral vs central benzodiazepine receptor selectivity in a new class of peripheral benzodiazepine receptor ligands related to alpidem. J. Med. Chem. 1996;39:4275-4284. DOI: 10.1021/jm960325j
95. Cappelli A, Giuliani G, Valenti S, et al. Synthesis and structure-activity relationship studies in peripheral benzodiazepine receptor ligands related to alpidem. Bioorg. Med. Chem. 2008; 16:3428–3437.DOI: 10.1016/j.bmc.2007.06.044
96. Cappelli A, Bini G, Valenti S, et al. Synthesis and structure-activity relationship studies in translocator protein ligands based on a pyrazolo[3,4-b] quinoline scaffold. J Med Chem. 2011; 27:7165–75. DOI: 10.1021/jm200770f
97. Schlichter R, Rybalchenko V, Poisbeau P, et al. Modulation of GABAergic synaptic transmission by the non-benzodiazepine anxiolytic etifoxine. Neuropharmacology. 2000;39: 1523–1535. DOI .org/10.1016/s0028-3908(99)00253-1
98. Verleye M, Akwa Y, Liere P, et al. The anxiolytic etifoxine activates the peripheral benzodiazepine receptor and increases the neurosteroid levels in rat brain. Pharmacol. Biochem. Behav. 2005;82:712–720.DOI: 10.1016/j.pbb.2005.11.013
99. Ugale R, Sharma A, Kokare D, et al. Neurosteroid allopregnanolone mediates anxiolytic effect of etifoxine in rats. Brain Res. 2007;1184:193–201. DOI: 10.1016/j.brainres.2007.09.041
100. Aouad M, Charlet A, Rodeau J, et al. Reduction and prevention of vincristine-induced neuropathic pain symptoms by the nonbenzodiazepine anxiolytic etifoxine are mediated by 3alpha-reduced neurosteroids. Pain. 2009;147:54–59. DOI: 10.1016/j.pain.2009.08.001
101. Nguyen N, Fakra E, Pradel V, et al. Efficacy of etifoxine compared to lorazepam monotherapy in the treatment of patients with adjustment disorders with anxiety: a double-blind controlled study in general practice. Human Psychopharmacol. 2006;21:139–149. DOI: 10.1002/hup.757
102. Mokrov GV, Deeva OA, Gudasheva TA, et al. Design, synthesis and anxiolytic-like activity of 1-arylpyrrolo[1,2-a]pyrazine-3-carboxamides.Bioorg. Med. Chem. 2015;23(13):3368–3378. DOI: 10.1016/j.bmc.2015.04.049
103. Патент РФ на изобретение №2572076./ 26.03.2014. Середенин С.Б., Мокров Г.В., Гудашева Т.А., и др. 1-Арилпирроло [1,2-a]пиразин-3карбоксамиды с нейропсихотропной активностью. [Patent Rus №2572076./ 26.03.2014. Seredenin S.B., Mokrov G.V., Gudasheva T.A., et al. 1-Arilpirrolo [1,2-a]pirazin-3-karboksamidy s nejropsihotropnoj aktivnost'yu. (in Russ).]. URL: http://www.freepatent.ru/patents/2572076. дата обращения 03.10.2018).
104. Ярков С.А., Мокров Г.В., Гудашева Т.А. и др. Фармакологическое изучение новых соединений – регуляторов 18 кДа транслокаторного белка // Экспериментальная и клиническая фармакология. – 2016. – Т. 79. – № 1. – С. 7–11. [Yarkov SA, Mokrov GV, Gudasheva TA, et al. Pharmacological study of new compounds acting as regulators of 18-kDa translocator protein ligands. Experimentalnaya i klinicheskaya farmakologiya. 2016. 79(1): 7–11 (in Russ).]
105. Яркова М.А., Мокров Г.В., Гудашева Т.А. и др. Анксиолитическое действие оригинальных производных пирроло[1,2-a]пиразина, лигандов TSPO, зависит от биосинтеза нейростероидов // Химикофармацевтический журнал. – 2016. – Т. 50. – № 8. – С. 3–6. [Yarkova MA, Mokrov GV, Gudasheva TA, et al. Anxiolytic activity of original pyrrolo[1,2-a]pyrazine derivatives (TSPO ligands) depends on neurosteroid biosynthesis. Khimiko-farmacevticheskiyi zhurnal. 2016;50(8):3–6. (in Russ).] DOI: 10.30906/0023-1134-2016-50-8-3-6
106. Яркова М.А., Поварнина П.Ю., Мокров Г.В. и др. Антидепрессивный и ноотропный эффекты оригинальных лигандов транслокаторного белка TSPO // Экспериментальная и клиническая фармакология. – 2017. – Т. 80. – № 4. – С. 3–7. [Yarkova MA, Povarnina PYu, Mokrov GV, et al. Antidepressant and nootrope effects of original TSPO ligands. Experimentalnaya i klinicheskaya farmakologiya. 2017;80(4):3–7 (in Russ).]
107. Гудашева Т.А., Деева О.А., Мокров Г.В. и др. Первый дипептидный лиганд транслокаторного протеина: дизайн и анксиолитическая активность // Доклады академии наук. – 2015. – Т. 464. – № 3. – С. 361–364. [Gudasheva TA, Deeva OA, Mokrov GV, et al. The first dipeptide ligand of translocator protein: design and anxiolytic activity. Doklady akademii nauk. 2015;464(3):361–364 (in Russ).] DOI: 10.7868/S0869565215270249
108. Патент РФ на изобретение №2573823./ 26.03.2014. Середенин С.Б., Деева О.А., Гудашева Т.А., и др. «Замещенные дипептиды с нейропсихотропной активностью». [Patent Rus №2573823./ 26.03.2014 Seredenin SB, Deeva OA, Gudasheva TA, et al. Zameshchennye dipeptidy s nejropsihotropnoj aktivnost'yu (in Russ).]. URL: http://www.freepatent.ru/patents/2573823. (дата обращения 03.10.2018).
109. Гудашева Т.А. Теоретические основы и технологии создания дипептидных лекарств // Известия Академии наук. Серия химическая. – 2015. – Т. 64. –№ 9. – С. 2012–2021. [Gudasheva TA. Theoretical grounds and technologies for dipeptide drug development. Izvestiya akademii nauk. Seriya kimicheskaya. 2015;64(9):2012–2021 (in Russ).]
110. Gudasheva TA, Voronina TA, Ostrovskaya RU, et al. Design of N-acylprolyltyrosine tripeptoid analogs of neurotensin as potential atypical antipsychotic agents. J. Med. Chem. 1998;41:284–290.DOI: 10.1021/jm970217c
111. Гудашева Т.А. Стратегия создания дипептидных лекарств // Вестник РАМН. – 2011. – Т. 7. – С. 8–16 [Gudasheva TA. Stategiya sozdaniya dipeptidnyh lekarstv. Vestnik RAMN. 2011;7:8–16 (in Russ).]
112. Гудашева Т.А., Деева О.А., Яркова М.А. и др. Зависимость анксиолитического действия дипептидного лиганда TSPO ГД-23 от биосинтеза нейростероидов // Доклады академии наук. – 2016. – Т. 469. –№ 5. – С. 621–624. [Gudasheva TA, Deeva OA, Yarkova MA, et al.Dependence of anxiolytic effects of the dipeptide TSPO ligand GD-23 on neurosteroid biosynthesis. Doklady akademii nauk. 2016;469(5):621–624. (in Russ).] DOI: 10.7868/S0869565216230274
113. Поварнина П.Ю., Гудашева Т.А., Деева О.А. и др. Дипептидный лиганд транслокаторного белка ГД-23 проявляет анксиолитическую и ноотропную активности // Acta Naturae. – 2015. – Т. 7. – № 3 (26). – С. 120–125. [Povarnina PYu, Gudasheva TA, Deeva OA, et al. The novel dipeptide translocator protein ligand, referred to as GD-23, exerts anxiolytic and nootropic activities. Acta Naturae. 2015;7(3);(26):120–125. (in Russ).]
Review
For citations:
Mokrov G.V., Deeva O.A., Yarkova M.A., Gudasheva T.A., Seredenin S.B. Translocator protein TSPO 18 kDa and its ligands: a promising approach to the creation of new neuropsychotropic drug. Pharmacokinetics and Pharmacodynamics. 2018;(4):3-27. (In Russ.) https://doi.org/ 10.24411/2587-7836-2018-10026