Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Dose-dependent chemotranscriptomics analysis of the differential effects of vitamin D3 on gene expression in human neuronal progenitor cells NPC and in MCF7 tumor cells

https://doi.org/ 10.24411/2587-7836-2018-10013.

Abstract

Resume. Different cell types respond differently to the effects of vitamin D3. The paper presents the results of a dose-dependent differential chemotranscriptome analysis of vitamin D3 in relation to breast tumor cells (MCF7 line) and neuron progenitor cells (NPC line). Expression of the genes involved in immunomodulation (192 genes) was significantly increased in tumor cells and in the intracellular signaling from receptors (275 genes) and the expression of genes involved in maintaining energy metabolism (482 genes), cell division / proliferation (387 genes), DNA repair (391 gene), synthesis and transport of proteins (188 genes) and in maintaining chronic inflammation (factors of TNF / NF-kB. 105 genes). In neuronal cells, similar changes in the expression of these categories of genes occurred to a much lesser extent and did not reach statistical significance. The reduction in DNA repair in tumor cells stimulates their apoptosis, the decrease in energy metabolism reduces the ability of tumor cells to divide and to resist therapeutic effects. It is interesting to note that vitamin D3 contributed to a decrease in the expression of genes supporting the cellular response to gamma radiation (9 genes) and contributed to the enhancement of the antitumor effects of vitamin A (5 genes). Also, vitamin D3 reduced the expression of genes that express potential target proteins of antitumor drugs (casein kinase, c-src tyrosine kinase, c-myc, etc.). Thus, vitamin D3 suppressed the division of tumor cells in a dose-dependent manner, without adversely affecting the survival of neurons.

About the Authors

I. Yu. Torshin
Federal Research Center «Computer Science and Control» of the Russian Academy of Sciences; Center for storage and analysis of big data, Moscow State University
Russian Federation


O. A. Gromova
Federal Research Center «Computer Science and Control» of the Russian Academy of Sciences; Center for storage and analysis of big data, Moscow State University
Russian Federation


D. E. Frolova
Federal State Budgetary Educational Institution of Higher Education «Ivanovo State Medical Academy» of the Ministry of Healthcare of the Russian Federation
Russian Federation


T. R. Grishina
Federal State Budgetary Educational Institution of Higher Education «Ivanovo State Medical Academy» of the Ministry of Healthcare of the Russian Federation
Russian Federation


N. P. Lapochkina
Federal State Budgetary Educational Institution of Higher Education «Ivanovo State Medical Academy» of the Ministry of Healthcare of the Russian Federation
Russian Federation


References

1. Громова О.А., Торшин И.Ю. Витамин D. Смена парадигмы / под ред. Е.И. Гусева, И.Н. Захаровой. - М.: ГЭОТАР-Медиа; 2017. -568 с. [Gromova OA, Torshin IYu. Vitamin D. Smena paradigmy. Ed by EI Guseva, IN Zakharova. Moscow: GEOTAR-Media; 2017. (In Russ).]. ISBN 978-5-9704-4058-2.

2. Torshin IYu. Sensing the change: from molecular genetics to personalized medicine. Nova Biomedical Books. NY. USA. 2009. In “Bioinformatics in the Post-Genomic Era” series. ISBN 1-60692-217-0.

3. Громова О.А., Торшин И.Ю., Спиричев В.Б. Полногеномный анализ сайтов связывания рецептора витамина D. указывает на широкий спектр потенциальных применений витамина D. в терапии // Медицинский совет. - 2016. - №1. - С.12-21. DOI:10.21518/2079-701X-2016-1-12-21

4. Свирновский А.И. Резистентность опухолевых клеток к терапевтическим воздействиямкак медико-биологическая проблема. Международные обзоры: клиническая практика и здоровье. - 2014. - Т.11. - №5. - С.15- 38. DOI: 10.21518/2079-701X-2016-1-12-21

5. Torshin IY, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs. part 1: fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2014;24(1):11- 23. DOI: 10.1134/S1054661814010209

6. Торшин И.Ю., Громова О.А., Федотова Л.Э., и др. Хемоинформационный анализ молекулы оротовой кислоты указывает на противовоспалительные. нейропротекторные и кардиопротекторные свойства лиганда магния // Фарматека. - 2013. - Т.266 - №13. - С.95-104.

7. Torshin IY. The study of the solvability of the genome annotation problem on sets of elementary motifs. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2011;21(4):652- 662. DOI: 10.1134/S1054661811040171

8. Torshin IY, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. part 1: factorization approach. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017;27(1):16- 28. DOI: 10.1134/S1054661817010151

9. Torshin IY, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs: Part 2. Local completeness of invariants of chemographs in view of the combinatorial theory of solvability. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2014;24(2):196- 208. DOI: 10.1134/S1054661814020151

10. Громова О.А., Торшин И.Ю., Федотова Л.Э., Громов А.Н. Хемореактомный анализ сукцината этилметилгидроксипиридина // Неврология. нейропсихиатрия. психосоматика. - 2016. - T8. - N3. - С.53- 60. DOI: http://dx.doi. org/10.14412/2074-2711-2016-3-53-60

11. Громова О.А. Торшин И.Ю. Федотова Л.Э. Геронтоинформационный анализ свойств молекулы мексидола // Неврология, нейропсихиатрия, психосоматика. - 2017; - Т9. - №4. - С.46- 54. DOI: http://dx.doi.org/10.14412/2074-2711-2017-4-46-54

12. Торшин И.Ю., Громова О.А., Сардарян И.С., Федотова Л.Э. Сравнительный хемореактомный анализ мексидола // Журнал неврологии и психиатрии им. C.C. Корсакова. - 2017. - Т.117. - №1 2. - С.75- 83

13. Huang HY, Luther SA. Expression and function of interleukin-7 in secondary and tertiary lymphoid organs. Semin Immunol. 2012;24(3):175-89. DOI: 10.1016/j.smim.2012.02.008.

14. Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med. 2015;5(4). pii: 5/4/a006098

15. Thomas SJ, Snowden JA, Zeidler MP, Danson SJ. The role of JAK/STAT signalling in the pathogenesis. prognosis and treatment of solid tumours. Br J Cancer. 2015;113(3):365- 71. DOI: 10.1038/bjc.2015.233

16. Ishihara S, Inman DR, Li WJ, et al. Mechano-Signal Transduction in Mesenchymal Stem Cells Induces Prosaposin Secretion to Drive the Proliferation of Breast Cancer Cells. Cancer Res. 2017;77(22):6179- 6189. DOI: 10.1158/0008-5472.CAN-17-0569

17. Zhang R., Li H., Zhang S., et al. RXRalpha provokes tumor suppression through p53/p21/p16 and PI3K-AKT signaling pathways during stem cell differentiation and in cancer cells. Cell Death Dis. 2018;9(5):532. DOI: 10.1038/s41419-018-0610-1

18. Zhang J., Bao S., Furumai R., et al. Protein phosphatase 5 is required for ATR-mediated checkpoint activation. Mol Cell Biol. 2005;25(22):9910-9. DOI: 10.1128/MCB.25.22.9910-9919.2005

19. Kang Y., Cheong HM, Lee JH, et al. Protein phosphatase 5 is necessary for ATR-mediated DNA repair. Biochem Biophys Res Commun. 2011;404(1):476- 81. DOI: 10.1016/j.bbrc.2010.12.005

20. Yamashita A., Taniwaki T., Kaikoi Y., Yamazaki T. Protective role of the endoplasmic reticulum protein mitsugumin23 against ultraviolet C-induced cell death. FEBS Lett. 2013;587(9):1299- 303. DOI: 10.1016/j. febslet.2013.03.024

21. Willis DM, Loewy AP, Charlton-Kachigian N., et al. Regulation of osteocalcin gene expression by a novel Ku antigen transcription factor complex. J. Biol Chem. 2002;277(40):37280- 91. DOI: 10.1074/jbc. M206482200

22. Liu C., Li Y., Semenov M., et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108(6):837- 847.

23. Graham TA, Clements WK, Kimelman D., Xu W. The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT Mol Cell. 2002;10(3):563- 571.

24. Sun G., Budde RJ. Expression. purification. and initial characterization of human Yes protein tyrosine kinase from a bacterial expression system. Arch Biochem Biophys. 1997;345( 1): 135- 42. DOI: 10.1006/abbi.1997.0236

25. Pedram A., Razandi M. Deschenes RJ. Levin ER. DHHC-7 and -21 are palmitoylacyltransferases for sex steroid receptors. Mol Biol Cell. 2012;23(1):188- 99. DOI: 10.1091/mbc.E11-07-0638

26. Eckfeld K., Hesson L., Vos MD, et al. RASSF4/AD037 is a potential ras effector/tumor suppressor of the RASSF family. Cancer Res. 2004;64(23):8688- 93. DOI: 10.1158/0008-5472.CAN-04-2065

27. Gery S., Park DJ, Vuong PT, et al. RTP801 is a novel retinoic acid-responsive gene associated with myeloid differentiation. Exp Hematol. 2007;35(4):572- 8. DOI: 10.1016/j.exphem.2007.01.049

28. Ridge RJ, Sloane NH. Partial N-terminal amino acid sequence of the anti-neoplastic urinary protein (ANUP) and the anti-tumour effect of the N-terminal nonapeptide of the unique cytokine present in human granulocytes. Cytokine. 1996;8(1):1-5. DOI: 10.1006/cyto.1996.0001.29

29. Громова О.А., Пронин А.В., Гришина ТР, и др. Противоопухолевые эффекты Аквадетрима водного раствора мицелл с витамином D. // Фарматека. - 2015. - Т.313. -№20. - С.63- 68.


Review

For citations:


Torshin I.Yu., Gromova O.A., Frolova D.E., Grishina T.R., Lapochkina N.P. Dose-dependent chemotranscriptomics analysis of the differential effects of vitamin D3 on gene expression in human neuronal progenitor cells NPC and in MCF7 tumor cells. Pharmacokinetics and Pharmacodynamics. 2018;(2):35-51. (In Russ.) https://doi.org/ 10.24411/2587-7836-2018-10013.

Views: 607


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)