On the selective antibacterial action of zinc compounds on pathogenic and beneficial microbiota
https://doi.org/10.37489/2587-7836-2025-3-13-20
EDN: MSACJA
Abstract
The antibacterial properties of zinc citrate are important for the treatment and prevention of pathologies caused by bacterial and viral pathogens. The trace element zinc exerts a suppressive effect on pathogenic microbiota and supports various aspects of beneficial microflora. However, the mechanisms of this "dual" action of zinc on microbiota are poorly understood. An analysis of 5,103 publications on the antibacterial effects of zinc salts provided a logical justification for zinc's selective bacteriostatic and bactericidal action against pathogenic flora: (1) zinc salts (e.g., zinc citrate), included in probiotics (e.g., Acipol Forte), support beneficial microbiota (lactoand bifidobacteria), which, in turn, displace pathogenic microbiota; (2) zinc supports humoral and cellular immunity in the host; (3) differentiated, genetically determined effects of zinc compounds on specific strains of bacterial pathogens and beneficial microbiota.
About the Authors
O. A. GromovaRussian Federation
Olga A. Gromova — PhD, Dr. Sci. (Med.), Professor, Leading researcher
Moscow
I. Yu. Torshin
Russian Federation
Ivan Yu. Torshin — PhD, Cand. Sci. (Physics and Mathematics), Cand. Sci. (Chemistry), Leading researcher
Moscow
P. A. Galenko-Yaroshevsky
Russian Federation
Pavel A. Galenko-Yaroshevsky — PhD, Dr. Sci. (Med.), Professor, RAS corresponding member, Head of the Department of Pharmacology
Krasnodar
A. N. Gromov
Russian Federation
Andrey N. Gromov — research engineer
Moscow
V. A. Semenov
Russian Federation
Vladimir A. Semenov — PhD, Dr. Sci. (Med.), Professor of the Department of Neurology, Neurosurgery, Medical Genetics and Medical Rehabilitation
Kemerovo
References
1. Gromova OA, Torshin IYu, Sorokin AI. Pharmacoinformatic study of the synergistic effect of probiotics Lactobacillus rhamnosus ATCC 53103 (LGG), Bifidobacterium longum CECT 7894 and zinc citrate on the intestinal microbiota. Experimental and Clinical Gastroenterology. 2025;(1):40-58. (In Russ.). doi: 10.31146/1682-8658-ecg233-1-40-58.
2. Capurso L. Thirty Years of Lactobacillus rhamnosus GG: A Review. J Clin Gastroenterol. 2019 Mar;53 Suppl 1:S1-S41. doi: 10.1097/MCG.0000000000001170.
3. Micronutrients and Reproductive Health. Handbook. Gromova OA, Torshin IYu. 2nd revised and supplemented edition. GEOTAR-Media, 2022. (In Russ.). ISBN 978-5-9704-6786-2.
4. Gromova OA, Torshin IYu, Moiseev VS, et al. The use of zinc and vitamin С for the prevention and adjuvant therapy of acute respiratory diseases. Therapy. 2017;11(1):36-46. (In Russ.).
5. Gromova O, Shilyaev R, Torshin I, et al. Various ways of the organic zinc salts administration with a colostrum in frequently and protractedly sick children. Pediatric pharmacology. 2009;6(1):37-42. (In Russ.).
6. Gromova OA, Torshin IYu. Zinc as a necessary element in the prevention of congenital malformations of the fetus. Medical alphabet. 2016;1(7):19-25. [(In Russ.).
7. Johanns VC, Epping L, Semmler T, et al. High-Zinc Supplementation of Weaned Piglets Affects Frequencies of Virulence and Bacteriocin Associated Genes Among Intestinal Escherichia coli Populations. Front Vet Sci. 2020 Dec 16;7:614513. doi: 10.3389/fvets.2020.614513.
8. Li D, Achkar JP, Haritunians T, et al. A Pleiotropic Missense Variant in SLC39A8 Is Associated With Crohn's Disease and Human Gut Microbiome Composition. Gastroenterology. 2016 Oct;151(4):724-32. doi: 10.1053/j.gastro.2016.06.051.
9. Micronutrients and Reproductive Health. Handbook. Gromova OA, Torshin IYu. 2nd revised and supplemented edition. GEOTAR-Media, 2022. (In Russ.). ISBN 978-5-9704-6786-2.
10. Ammendola S, Pasquali P, Pistoia C, et al. High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect Immun. 2007 Dec;75(12):5867-76. doi: 10.1128/IAI.00559-07.
11. Expert data analysis in molecular pharmacology. Torshin IYu, Gromova OA. Moscow. MCNMO. 2012. (In Russ.). ISBN 978-5-4439-0051-3.
12. Gromova OA, Torshin IYu, Chuchalin AG, Maksimov VA. Microbiome, probiotics, and COVID-19: promising approaches to support innate and acquired immunity systems. Experimental and Clinical Gastroenterology. 2021;188(4):68-75. (In Russ.). doi: 10.31146/1682-8658-ecg-188-4-68-75.
13. Almoudi MM, Hussein AS, Abu Hassan MI, Mohamad Zain N. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dent J. 2018 Oct;30(4):283-291. doi: 10.1016/j.sdentj.2018.06.003.
14. Reyes VC, Li M, Hoek EM, et al. Genome-wide assessment in Escherichia coli reveals time-dependent nanotoxicity paradigms. ACS Nano. 2012 Nov 27;6(11):9402-15. doi: 10.1021/nn302815w.
15. Crane JK, Cheema MB, Olyer MA, Sutton MD. Zinc Blockade of SOS Response Inhibits Horizontal Transfer of Antibiotic Resistance Genes in Enteric Bacteria. Front Cell Infect Microbiol. 2018 Nov 21;8:410. doi: 10.3389/fcimb.2018.00410.
16. Joly B, Cluzel R. Rôle des métaux lourds et de leurs dérivés dans la sélection de bacillles à gram négatif résistants aux antibiotiques [The role of heavy metals and their derivatives in the selection of antibiotics resistant gram-negative rods (author's transl)]. Ann Microbiol (Paris). 1975 JulAug;126B(1):51-61. French.
17. Cerasi M, Ammendola S, Battistoni A. Competition for zinc binding in the host-pathogen interaction. Front Cell Infect Microbiol. 2013 Dec 24;3:108. doi: 10.3389/fcimb.2013.00108.
18. Wątły J, Potocki S, Rowińska-Żyrek M. Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity. Chemistry. 2016 Nov 2;22(45):15992-16010. doi: 10.1002/chem.201602376.
19. Neyrolles O, Mintz E, Catty P. Zinc and copper toxicity in host defense against pathogens: Mycobacterium tuberculosis as a model example of an emerging paradigm. Front Cell Infect Microbiol. 2013 Nov 27;3:89. doi: 10.3389/fcimb.2013.00089.
20. Abdelraheem WM, Kamel HS, Gamil AN. Evaluation of anti-biofilm and anti-virulence effect of zinc sulfate on Staphylococcus aureus isolates. Sci Rep. 2024 Oct 28;14(1):25747. doi: 10.1038/s41598-024-75317-0.
21. Cavaco LM, Hasman H, Aarestrup FM. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Vet Microbiol. 2011 Jun 2;150(3-4):344-8. doi: 10.1016/j.vetmic.2011.02.014.
22. Almoudi MM, Hussein AS, Mohd Sarmin NI, Abu Hassan MI. Antibacterial effectiveness of different zinc salts on Streptococcus mutans and Streptococcus sobrinus: An in-vitro study. Saudi Dent J. 2023 Nov;35(7):883- 890. doi: 10.1016/j.sdentj.2023.07.003.
23. Elkhatib W, Noreddin A. In Vitro Antibiofilm Efficacies of Different Antibiotic Combinations with Zinc Sulfate against Pseudomonas aeruginosa Recovered from Hospitalized Patients with Urinary Tract Infection. Antibiotics (Basel). 2014 Feb 17;3(1):64-84. doi: 10.3390/antibiotics3010064.
24. Kim Y, Chang JY, Kim YY, et al. Effects of Zinc Compounds on the Enzymatic Activities of Lysozyme and Peroxidase and Their Antifungal Activities. Biol Trace Elem Res. 2024 Dec;202(12):5850-5862. doi: 10.1007/s12011-024-04110-x.
Review
For citations:
Gromova O.A., Torshin I.Yu., Galenko-Yaroshevsky P.A., Gromov A.N., Semenov V.A. On the selective antibacterial action of zinc compounds on pathogenic and beneficial microbiota. Pharmacokinetics and Pharmacodynamics. 2025;(3):13-20. (In Russ.) https://doi.org/10.37489/2587-7836-2025-3-13-20. EDN: MSACJA







































