Ферроптоз и старение
https://doi.org/10.37489/2587-7836-2025-1-17-26
EDN: VWHUHM
Аннотация
Ферроптоз — это регулируемая форма гибели клеток, характеризующаяся железозависимым перекисным окислением липидов. С момента своего первоначального описания он привлёк значительное внимание из-за его последствий при различных заболеваниях, включая рак, нейродегенерацию и ишемически-реперфузионное повреждение. Процесс старения характеризуется прогрессирующим снижением клеточной функции и повышенной восприимчивостью к окислительному повреждению, оба из которых пересекаются с путями ферроптоза. В этом обзоре исследуется сложная связь между ферроптозом и старением, с упором на молекулярные механизмы, роль метаболизма железа, последствия при возрастных заболеваниях и потенциальные терапевтические стратегии. Понимая взаимодействие между ферроптозом и старением, исследователи могут обнаружить новые цели для содействия здоровому старению и смягчения возрастных расстройств.
Об авторах
А. А. ГаранинРоссия
Гаранин Алексей Алексеевич — ассистент кафедры фармакологии ФГБОУ ВО Ивановский ГМУ Минздрава России.
Иваново
Т. Е. Богачева
Россия
Богачева Татьяна Евгеньевна — к. м. н., доцент кафедры фармакологии ФГБОУ ВО ИвГМА Минздрава России.
Иваново
О. А. Громова
Россия
Громова Ольга Алексеевна — профессор кафедры фармакологии ФГБОУ ВО Ивановский ГМУ Минздрава России; д. м. н, профессор, в. н. с. ФИЦ ИУ РАН.
Иваново; Москва
Список литературы
1. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012 May 25;149(5):1060-72. doi: 10.1016/j.cell.2012.03.042.
2. Di Micco R, Krizhanovsky V, Baker D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021 Feb;22(2):75-95. doi: 10.1038/s41580-020-00314-w.
3. Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 2023 Jan;20(1):7-23. doi: 10.1038/s41569-022-00735-4.
4. Reichert CO, de Freitas FA, Sampaio-Silva J, et al. Ferroptosis Mechanisms Involved in Neurodegenerative Diseases. Int J Mol Sci. 2020 Nov 20;21(22):8765. doi: 10.3390/ijms21228765.
5. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021 Apr;22(4):266-282. doi: 10.1038/s41580-020-00324-8.
6. Zhang Y, Xin L, Xiang M, et al. The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother. 2022 Jan;145:112423. doi: 10.1016/j.biopha.2021.112423.
7. Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022 Jul 7;185(14):2401-2421. doi: 10.1016/j.cell.2022.06.003.
8. Nemeth E, Ganz T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int J Mol Sci. 2021 Jun 17;22(12):6493. doi: 10.3390/ijms22126493.
9. Li L, Wang K, Jia R, et al. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation. Redox Biol. 2022 Oct;56:102435. doi: 10.1016/j.redox.2022.102435.
10. Liao P, Wang W, Wang W, et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022 Apr 11;40(4):365-378.e6. doi: 10.1016/j.ccell.2022.02.003.
11. Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022 Jun 16;82(12):2215-2227. doi: 10.1016/j.molcel.2022.03.022.
12. Rochette L, Dogon G, Rigal E, et al. Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. Int J Mol Sci. 2022 Dec 27;24(1):449. doi: 10.3390/ijms24010449.
13. Minami JK, Morrow D, Bayley NA, et al. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. Cancer Cell. 2023 Jun 12;41(6):1048-1060.e9. doi: 10.1016/j.ccell.2023.05.001.
14. Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 2023 Jul;19(7):1982-1996. doi: 10.1080/15548627.2023.2165323.
15. Liu Y, Wan Y, Jiang Y, et al. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer. 2023 May;1878(3):188890. doi: 10.1016/j.bbcan.2023.188890.
16. Li D, Wang Y, Dong C, et al. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene. 2023 Jan;42(2):83-98. doi: 10.1038/s41388-022-02537-x.
17. Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022 Nov;289(22):7038-7050. doi: 10.1111/febs.16059
18. Chen X, Yu C, Kang R, et al. Cellular degradation systems in ferroptosis. Cell Death Differ. 2021 Apr;28(4):1135-1148. doi: 10.1038/s41418-020-00728-1.
19. Tian Y, Tian Y, Yuan Z, et al. Iron Metabolism in Aging and Age-Related Diseases. Int J Mol Sci. 2022 Mar 25;23(7):3612. doi: 10.3390/ijms23073612.
20. Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis. 2021 Apr 1;12(2):529-551. doi: 10.14336/AD.2020.0912.
21. Costa I, Barbosa DJ, Benfeito S, et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther. 2023 Apr;244:108373. doi: 10.1016/j.pharmthera.2023.108373.
22. Qiu B, Zandkarimi F, Bezjian CT, et al. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell. 2024 Feb 29;187(5):1177-1190.e18. doi: 10.1016/j.cell.2024.01.030.
23. Anandhan A, Dodson M, Shakya A, et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci Adv. 2023 Feb 3;9(5):eade9585. doi: 10.1126/sciadv.ade9585.
24. Chen GH, Song CC, Pantopoulos K, et al. Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med. 2022 Feb 20;180:95-107. doi: 10.1016/j.freerad-biomed.2022.01.012.
25. Niu B, Liao K, Zhou Y, et al. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021 Oct;277:121110. doi: 10.1016/j.biomaterials.2021.121110.
26. Yan D, Wu Z, Qi X. Ferroptosis-related metabolic mechanism and nanoparticulate anticancer drug delivery systems based on ferroptosis. Saudi Pharm J. 2023 Apr;31(4):554-568. doi: 10.1016/j.jsps.2023.02.008.
27. Gromova OA, Torshin II, Chuchalin AG. [Ferritin as a biomarker of aging: geroprotective peptides of standardized human placental hydrolysate. A review]. Ter Arkh. 2024 Sep 14;96(8):826-835. Russian. doi: 10.26442/00403660.2024.08.202811.
28. Torshin IY, Gromova OA, Tikhonova OV, Chuchalin AG. [Molecular mechanisms of the effect of standardized placental hydrolysate peptides on mitochondria functioning]. Ter Arkh. 2023 Dec 28;95(12):1133-1140. Russian. doi: 10.26442/00403660.2023.12.202494.
29. Tian R, Abarientos A, Hong J, et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci. 2021 Jul;24(7):1020-1034. doi: 10.1038/s41593-021-00862-0.
Рецензия
Для цитирования:
Гаранин А.А., Богачева Т.Е., Громова О.А. Ферроптоз и старение. Фармакокинетика и Фармакодинамика. 2025;(1):17-26. https://doi.org/10.37489/2587-7836-2025-1-17-26. EDN: VWHUHM
For citation:
Garanin A.A., Bogacheva T.E., Gromova O.A. Ferroptosis and ageing. Pharmacokinetics and Pharmacodynamics. 2025;(1):17-26. (In Russ.) https://doi.org/10.37489/2587-7836-2025-1-17-26. EDN: VWHUHM