Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

The cardiotropic properties of ZMEI-3 compound – a potential inhibitor of Epac proteins

https://doi.org/10.37489/2587-7836-2024-4-39-48

EDN: KITWGE

Abstract

Introduction. It is known that the allosteric effector of cAMP, in addition to protein kinase A, is the Epac regulatory proteins, which in cardiomyocytes play a key role in the electromechanical coupling control and their rhythmic activity. However, under pathological conditions, abnormal activity of Epac proteins is responsible for the hypertrophy and fibrosis of cardiomyocytes and the initiation of cardiac arrhythmias. Objective. To study the cardiotropic activity of the compound N,2,4,6-tetramethyl-N-(pyridin-4-yl)benzolsulfonamide (code ZMEI-3), which potentially has the properties of Epac protein antagonists, in models of cardiac arrhythmias and alcoholic cardiomyopathy ( ACMP).

Materials and methods. Experiments were carried out on outbred male rats. The antiarrhythmic activity of the ZMEI-3 compound was assessed in models of aconitine and reperfusion arrhythmias, and the cardioprotective activity in a translational model of ACM, which is formed after 24 weeks of forced intake of 10 % ethanol.

Results. Using a model of reperfusion arrhythmias in rats, it was shown that the ZMEI-3 compound (2 mg/kg/day for 7 days i.p.) reduces the incidence of life-threatening arrhythmias, including ventricular fibrillation. In conditions of formed ACMP, the studied compound (2 mg/kg/day for 28 days i.p.) increased the inotropic function of the heart, which was judged by the value of the left ventricular ejection fraction. Histological analysis showed that in conditions of formed ACMP, the ZMEI-3 compound reduces the severity of morphological signs of alcoholic heart damage.

Conclusions. Compound ZMEI-3, when used in a course, has a pronounced antiarrhythmic effect and reduces the severity of alcohol-related heart failure.

About the Authors

S. A. Kryzhanovskii
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Sergey A. Kryzhanovskii – PhD, Dr. Sci. (Med.), Head of Laboratory of Circulation Pharmacology

Moscow



G. V. Mokrov
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Grigory V. Mokrov – PhD, Cand. Sci. (Chemical), Head of the Fine Organic Synthesis Laboratory at the Drug Chemistry Department

Moscow



I. B. Tsorin
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Iosif B. Tsorin – PhD, Dr. Sci. (Biology), Leading Researcher of Laboratory of Circulation Pharmacology

Moscow



E. O. Ionova
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Ekaterina O. Ionova – PhD, Cand. Sci. (Med.), Leading Researcher of Laboratory of Circulation Pharmacology

Moscow



M. B. Vititnova
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Marina B. Vititnova – PhD, Cand. Sci. (Biology), Leading Researcher of Laboratory of Circulation Pharmacology

Moscow



V. N. Stolyaruk
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Valeriy N. Stolyaruk – PhD, Cand. Sci. (Med.), Senior Researcher Scientist of of Laboratory of Circulation Pharmacology

Moscow



I. A. Miroshkina
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Irina A. Miroshkina – PhD, Cand. Sci. (Biology), Leading Researcher of Laboratory of Drug Toxicology

Moscow



A. V. Sorokina
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Alexandra V. Sorokina – PhD, Cand. Sci. (Biology), Leading Researcher of the Laboratory of Drug Toxicology

Moscow



A. D. Durnev
Federal research center for innovator and emerging biomedical and pharmaceutical technologies
Russian Federation

Andrei D. Durnev – Dr. Sci. (Med.), professor, corresponding member RAS, Head of the department of drug toxicology

Moscow



References

1. Walsh DA, Perkins JP, Krebs EG. An adenosine 3',5'-monophosphatedependant protein kinase from rabbit skeletal muscle. J Biol Chem. 1968 Jul 10; 243(13):3763-5.

2. Renström E, Eliasson L, Rorsman P. Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol. 1997 Jul 1;502 (Pt 1)(Pt 1):105-18. doi: 10.1111/j.1469-7793.1997.105bl.x.

3. Anciaux K, Van Dommelen K, Nicolai S, et al. Cyclic AMP-mediated induction of the glial fibrillary acidic protein is independent of protein kinase A activation in rat C6 glioma. J Neurosci Res. 1997 May 15;48(4):324-33.

4. de Rooij J, Zwartkruis FJ, Verheijen MH, et al. Epac is a Rap1 guaninenucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998 Dec 3;396(6710):474-7. doi: 10.1038/24884.

5. Banerjee U, Cheng X. Exchange protein directly activated by cAMP encoded by the mammalian rapgef3 gene: Structure, function and therapeutics. Gene. 2015 Oct 10;570(2):157-67. doi: 10.1016/j.gene.2015.06.063.

6. Aronoff DM, Canetti C, Serezani CH, et al. Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol. 2005 Jan 15; 174(2):595-9. doi: 10.4049/jimmunol.174.2.595.

7. Cheng X, Ji Z, Tsalkova T, Mei F. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai). 2008 Jul;40(7):651-62. doi: 10.1111/j.1745-7270.2008.00438.x.

8. Muñoz-Llancao P, Henríquez DR, Wilson C, et al. Exchange Protein Directly Activated by cAMP (EPAC) Regulates Neuronal Polarization through Rap1B. J Neurosci. 2015 Aug 12;35(32):11315-29. doi: 10.1523/JNEUROSCI.3645-14.2015.

9. Lin HB, Cadete VJ, Sra B, et al. Inhibition of MMP-2 expression with siRNA increases baseline cardiomyocyte contractility and protects against simulated ischemic reperfusion injury. Biomed Res Int. 2014;2014:810371. doi: 10.1155/2014/810371.

10. Gong W, Ma Y, Li A, Shi H, Nie S. Trimetazidine suppresses oxidative stress, inhibits MMP-2 and MMP-9 expression, and prevents cardiac rupture in mice with myocardial infarction. Cardiovasc Ther. 2018 Oct;36(5):e12460. doi: 10.1111/1755-5922.12460.

11. Dai ZL, Song YF, Tian Y, et al. Trimetazidine offers myocardial protection in elderly coronary artery disease patients undergoing non-cardiac surgery: a randomized, double-blind, placebo-controlled trial. BMC Cardiovasc Disord. 2021 Oct 1;21(1):473. doi: 10.1186/s12872-021-02287-w.

12. Lee LC, Maurice DH, Baillie GS. Targeting protein-protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease. Future Med Chem. 2013 Mar;5(4):451-64. doi: 10.4155/fmc.12.216.

13. Belacel-Ouari M, Zhang L, Hubert F, et al. Influence of cell confluence on the cAMP signalling pathway in vascular smooth muscle cells. Cell Signal. 2017 Jul;35:118-128. doi: 10.1016/j.cellsig.2017.03.025.

14. Pereira L, Rehmann H, Lao DH, et al. Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes. Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3991-6. doi: 10.1073/pnas.1416163112.

15. Ulucan C, Wang X, Baljinnyam E, et al. Developmental changes in gene expression of Epac and its upregulation in myocardial hypertrophy. Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1662-72. doi: 10.1152/ajpheart.00159.2007.

16. Cazorla O, Lucas A, Poirier F, et al. The cAMP binding protein Epac regulates cardiac myofilament function. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14144-9. doi: 10.1073/pnas.0812536106.

17. Pereira L, Ruiz-Hurtado G, Morel E, et al. Epac enhances excitationtranscription coupling in cardiac myocytes. J Mol Cell Cardiol. 2012 Jan;52(1):283-91. doi: 10.1016/j.yjmcc.2011.10.016.

18. Wu XM, Ou QY, Zhao W, et al. The GLP-1 analogue liraglutide protects cardiomyocytes from high glucose-induced apoptosis by activating the Epac-1/Akt pathway. Exp Clin Endocrinol Diabetes. 2014 Nov;122(10):608-14. doi: 10.1055/s-0034-1384584.

19. Fazal L, Laudette M, Paula-Gomes S, et al. Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death. Circ Res. 2017 Feb 17;120(4):645-657. doi: 10.1161/CIRCRESAHA.116.309859.

20. Métrich M, Lucas A, Gastineau M, et al. Epac mediates betaadrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res. 2008 Apr 25;102(8):959-65. doi: 10.1161/CIRCRESAHA.107.164947.

21. Berthouze-Duquesnes M, Lucas A, Saulière A, et al. Specific interactions between Epac1, β-arrestin2 and PDE4D5 regulate β-adrenergic receptor subtype differential effects on cardiac hypertrophic signaling. Cell Signal. 2013 Apr;25(4):970-80. doi: 10.1016/j.cellsig.2012.12.007.

22. Chen C, Du J, Feng W, et al. β-Adrenergic receptors stimulate interleukin-6 production through Epac-dependent activation of PKCδ/p38 MAPK signalling in neonatal mouse cardiac fibroblasts. Br J Pharmacol. 2012 May;166(2):676-88. doi: 10.1111/j.1476-5381.2011.01785.x.

23. Neef S, Heijman J, Otte K, et al. Chronic loss of inhibitor-1 diminishes cardiac RyR2 phosphorylation despite exaggerated CaMKII activity. Naunyn Schmiedebergs Arch Pharmacol. 2017 Aug;390(8):857-862. doi: 10.1007/s00210-017-1376-1.

24. Lezcano N, Mariángelo JIE, Vittone L, et al. Early effects of Epac depend on the fine-tuning of the sarcoplasmic reticulum Ca2+ handling in cardiomyocytes. J Mol Cell Cardiol. 2018 Jan;114:1-9. doi: 10.1016/j.yjmcc.2017.10.005.

25. Pereira L, Cheng H, Lao DH, et al. Epac2 mediates cardiac β1-adrenergicdependent sarcoplasmic reticulum Ca2+ leak and arrhythmia. Circulation. 2013 Feb 26;127(8):913-22. doi: 10.1161/CIRCULATIONAHA.12.148619.

26. Yang Z, Kirton HM, Al-Owais M, et al. Epac2-Rap1 Signaling Regulates Reactive Oxygen Species Production and Susceptibility to Cardiac Arrhythmias. Antioxid Redox Signal. 2017 Jul 20;27(3):117-132. doi: 10.1089/ars.2015.6485.

27. Tan YQ, Li J, Chen HW. Epac, a positive or negative signaling molecule in cardiovascular diseases. Biomed Pharmacother. 2022 Apr;148:112726. doi: 10.1016/j.biopha.2022.112726.

28. Slika H, Mansour H, Nasser SA, et al. Epac as a tractable therapeutic target. Eur J Pharmacol. 2023 Apr 15;945:175645. doi: 10.1016/j.ejphar.2023.175645.

29. Mokrov GV, Kryzhanovskii SA, Vorobyova TYu, et al. Pyridine derivatives with Epac inhibitor properties. Application for RF patent No. 2023131685. Priority date: 12/04/2023. (In Russ.).

30. Kryzhanovskii SA, Kolik LG, Tsorin IB, et al. Alcoholic Cardiomyopathy: Translation Model. Bull Exp Biol Med. 2017 Sep;163(5):627-631. doi: 10.1007/s10517-017-3865-0.

31. Teichholz LE, Kreulen T, Herman MV, Gorlin R. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol. 1976 Jan;37(1):7-11. doi: 10.1016/0002-9149(76)90491-4.

32. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005 Dec;18(12):1440-63. doi: 10.1016/j.echo.2005.10.005.

33. Ruiz-Hurtado G, Morel E, Domínguez-Rodríguez A, et al. Epac in cardiac calcium signaling. J Mol Cell Cardiol. 2013 May;58:162-71. doi: 10.1016/j.yjmcc.2012.11.021.

34. Pereira L, Bare DJ, Galice S, et al. β-Adrenergic induced SR Ca2+ leak is mediated by an Epac-NOS pathway. J Mol Cell Cardiol. 2017 Jul;108:8-16. doi: 10.1016/j.yjmcc.2017.04.005.

35. Kryzhanovskii SA, Nikiforova TD, Vititnova MB, Durnev AD. EPAC Proteins and Their Role in the Physiological and Pathological Processes in the Cardiovascular System. Part II. The Role of EPAC Proteins in the Physiology and Pathology of the Heart. Hum Physiol. 2020;46(4):111-134. (In Russ.). doi: 10.31857/S0131164620040074.

36. Mattiazzi A, Argenziano M, Aguilar-Sanchez Y, et al. Ca2+ Sparks and Ca2+ waves are the subcellular events underlying Ca2+ overload during ischemia and reperfusion in perfused intact hearts. J Mol Cell Cardiol. 2015 Feb;79:69-78. doi: 10.1016/j.yjmcc.2014.10.011.

37. Drapkina OM, Ashihmin YaI, Ivashkin VT. The problem of alcoholic cardiomyopathy. Vrach. 2005;8:48-50. (In Russ.).

38. Erokhin YuA, Khritinin DF. Cardiac disturbances in the case of chronic alcohol intoxication. Journal of New Medical Technologies. 2003;10(4):19-20. (In Russ.).

39. Laudette M, Coluccia A, Sainte-Marie Y, et al. Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress. Cardiovasc Res. 2019 Oct 1;115(12):1766-1777. doi: 10.1093/cvr/cvz076.

40. Insel PA, Murray F, Yokoyama U, et al. cAMP and Epac in the regulation of tissue fibrosis. Br J Pharmacol. 2012 May;166(2):447-56. doi: 10.1111/j.1476-5381.2012.01847.x.

41. Cai W, Fujita T, Hidaka Y, et al. Disruption of Epac1 protects the heart from adenylyl cyclase type 5-mediated cardiac dysfunction. Biochem Biophys Res Commun. 2016 Jun 17;475(1):1-7. doi: 10.1016/j.bbrc.2016.04.123.


Review

For citations:


Kryzhanovskii S.A., Mokrov G.V., Tsorin I.B., Ionova E.O., Vititnova M.B., Stolyaruk V.N., Miroshkina I.A., Sorokina A.V., Durnev A.D. The cardiotropic properties of ZMEI-3 compound – a potential inhibitor of Epac proteins. Pharmacokinetics and Pharmacodynamics. 2024;(4):39-48. (In Russ.) https://doi.org/10.37489/2587-7836-2024-4-39-48. EDN: KITWGE

Views: 125


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)