Experimental models of aging
https://doi.org/10.37489/2587-7836-2024-4-17-21
EDN: VMQTRD
Abstract
Aging is the result of combined changes in many biological processes that are associated with impaired functional status in humans and increase the risk of chronic pathologies. Since there are a number of insurmountable difficulties in conducting clinical studies on humans, it is necessary to resort to experimental modeling of key signs of aging and associated pathologies.
However, all the used models of aging are far from perfect, since there are a number of factors that do not allow a full comparison of the mechanisms of the aging process in humans and animals. This article presents the main experimental models of aging and determines their advantages and disadvantages in the context of potential studies.
About the Authors
A. A. GaraninRussian Federation
Alexey A. Garanin – Assistant Professor, Chair of Pharmacology
Ivanovo
O. A. Gromova
Russian Federation
Olga A. Gromova – Dr. Sci. (Med.), Professor of the Department of Pharmacology
Ivanovo;
Moscow
T. E. Bogacheva
Russian Federation
Tatiana E. Bogacheva – PhD, Cand. Sci. (Med.), Associate Professor of the Department of Pharmacology
Ivanovo
References
1. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013 Jun 6;153(6):1194-217. doi: 10.1016/j.cell.2013.05.039.
2. Moffitt TE, Belsky DW, Danese A, et al. The Longitudinal Study of Aging in Human Young Adults: Knowledge Gaps and Research Agenda. J Gerontol A Biol Sci Med Sci. 2017 Feb;72(2):210-215. doi: 10.1093/gerona/glw191.
3. Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R. Animal models of aging research: implications for human aging and age-related diseases. Annu Rev Anim Biosci. 2015;3:283-303. doi: 10.1146/annurevanimal-022114-110829.
4. Hamczyk MR, Nevado RM, Barettino A, et al. Biological Versus Chronological Aging: JACC Focus Seminar. J Am Coll Cardiol. 2020 Mar 3; 75(8):919-930. doi: 10.1016/j.jacc.2019.11.062.
5. Larsson L, Degens H, Li M, et al. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev. 2019 Jan 1;99(1):427-511. doi: 10.1152/physrev.00061.2017.
6. Burns TC, Li MD, Mehta S, et al. Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: A systematic bioinformatics-based critique of preclinical models. Eur J Pharmacol. 2015 Jul 15;759:101-17. doi: 10.1016/j.ejphar.2015.03.021.
7. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961 Dec;25:585-621. doi: 10.1016/0014-4827(61)90192-6.
8. Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol. 2000 Oct;35(8):927-45. doi: 10.1016/s0531-5565(00)00180-7.
9. Phipps SM, Berletch JB, Andrews LG, Tollefsbol TO. Aging cell culture: methods and observations. Methods Mol Biol. 2007;371:9-19. doi: 10.1007/978-1-59745-361-5_2.
10. Liu GH, Ding Z, Izpisua Belmonte JC. iPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol. 2012 Dec;24(6):765-74. doi: 10.1016/j.ceb.2012.08.014.
11. Machairaki V. Human Pluripotent Stem Cells as In Vitro Models of Neurodegenerative Diseases. Adv Exp Med Biol. 2020;1195:93-94. doi: 10.1007/978-3-030-32633-3_13.
12. Miller JD, Ganat YM, Kishinevsky S, et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell. 2013 Dec 5;13(6):691-705. doi: 10.1016/j.stem.2013.11.006.
13. Hu JL, Todhunter ME, LaBarge MA, Gartner ZJ. Opportunities for organoids as new models of aging. J Cell Biol. 2018 Jan 2;217(1):39-50. doi: 10.1083/jcb.201709054.
14. Lewis SK, Nachun D, Martin MG, et al. DNA Methylation Analysis Validates Organoids as a Viable Model for Studying Human Intestinal Aging. Cell Mol Gastroenterol Hepatol. 2020;9(3):527-541. doi: 10.1016/j.jcmgh.2019.11.013.
15. Birch HL. Extracellular Matrix and Ageing. Subcell Biochem. 2018;90:169-190. doi: 10.1007/978-981-13-2835-0_7.
16. Mortimer RK, Johnston JR. Life span of individual yeast cells. Nature. 1959 Jun 20;183(4677):1751-2. doi: 10.1038/1831751a0.
17. Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science. 1996 Oct 25;274(5287):546, 563-7. doi: 10.1126/science.274.5287.546.
18. Longo VD. Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cells. Neurobiol Aging. 1999 Sep-Oct;20(5):479-86. doi: 10.1016/s0197-4580(99)00089-5.
19. Longo VD, Shadel GS, Kaeberlein M, Kennedy B. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab. 2012 Jul 3; 16(1):18-31. doi: 10.1016/j.cmet.2012.06.002.
20. Mack HID, Heimbucher T, Murphy CT. The nematode Caenorhabditis elegans as a model for aging research. Drug Discovery Today: Disease Models. 2018;(27):3-13. doi: 10.1016/j.ddmod.2018.11.001.
21. Loeb J, Northrop JH. Is There a Temperature Coefficient for the Duration of Life? Proc Natl Acad Sci U S A. 1916 Aug;2(8):456-7. doi: 10.1073/pnas.2.8.456.
22. Jacobson J, Lambert AJ, Portero-Otín M, et al. Biomarkers of aging in Drosophila. Aging Cell. 2010 Aug;9(4):466-477. doi: 10.1111/j.1474-9726.2010.00573.x.
23. Taormina G, Ferrante F, Vieni S, et al. Longevity: Lesson from Model Organisms. Genes (Basel). 2019 Jul 9;10(7):518. doi: 10.3390/genes10070518.
24. Gilbert MJ, Zerulla TC, Tierney KB. Zebrafish (Danio rerio) as a model for the study of aging and exercise: physical ability and trainability decrease with age. Exp Gerontol. 2014 Feb;50:106-13. doi: 10.1016/j.exger.2013.11.013.
25. Mullins MC, Nüsslein-Volhard C. Mutational approaches to studying embryonic pattern formation in the zebrafish. Curr Opin Genet Dev. 1993 Aug;3(4):648-54. doi: 10.1016/0959-437x(93)90102-u.
26. Daya A, Donaka R, Karasik D. Zebrafish models of sarcopenia. Dis Model Mech. 2020 Mar 30;13(3):dmm042689. doi: 10.1242/dmm.042689.
27. Gorbunova V, Bozzella MJ, Seluanov A. Rodents for comparative aging studies: from mice to beavers. Age. 2008;(30):111-119.
28. Yamaza H, Komatsu T, Chiba T, et al. A transgenic dwarf rat model as a tool for the study of calorie restriction and aging. Exp Gerontol. 2004 Feb;39(2):269-72. doi: 10.1016/j.exger.2003.11.001.
29. Ackert-Bicknell CL, Anderson LC, Sheehan S, et al. Aging Research Using Mouse Models. Curr Protoc Mouse Biol. 2015 Jun 1;5(2):95-133. doi: 10.1002/9780470942390.mo140195.
30. Giacomello E, Crea E, Torelli L, et al. Age Dependent Modification of the Metabolic Profile of the Tibialis Anterior Muscle Fibers in C57BL/ 6J Mice. Int J Mol Sci. 2020 May 30;21(11):3923. doi: 10.3390/ijms21113923.
Review
For citations:
Garanin A.A., Gromova O.A., Bogacheva T.E. Experimental models of aging. Pharmacokinetics and Pharmacodynamics. 2024;(4):17-21. (In Russ.) https://doi.org/10.37489/2587-7836-2024-4-17-21. EDN: VMQTRD