Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

A study on the mnemotropic and antidepressant-like effects of the low-molecular-weight mimetic of nerve growth factor, dipeptide GK-2, in experimental ischemic stroke

https://doi.org/10.37489/2587-7836-2024-1-14-22

EDN: LBOTWJ

Abstract

Relevance. The nerve growth factor (NGF), possessing neuroprotective and neuroregenerative properties, holds promise for the development of medications for the treatment of post-stroke conditions. At the Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, a dimeric dipeptide mimic of NGF with the laboratory code GK-2 was designed and synthesized. Under conditions of experimental cerebral ischemia, it significantly reduced the volume of brain infarction and stimulated neuro- and synaptogenesis.

Objective. The aim of this study was to investigate the effects of GK-2 on experimental post-stroke dementia and depression.

Methods. Ischemic stroke was induced by occlusion of the middle cerebral artery (MCAO) in Wistar rats. GK-2 was administered intraperitoneally at a dose of 0.5 mg/kg for 21 days post MCAO. Short-term and long-term memory of the animals were assessed 30–40 days post MCAO using the novel object recognition test. Depressive-like state was evaluated through the forced swimming test and sucrose preference test.

Results. In animals subjected to MCAO, both short-term and long-term memory exhibited a statistically significant decline of 80 %, along with a depressive-like state characterized by a 50 % increase in total immobility time and a 30 % reduction in sucrose preference, when compared to the sham-lesioned group. Dipeptide GK-2 completely averted the onset of these impairments.

Conclusion. The dipeptide mimic of NGF, GK-2, mitigates the development of cognitive and psychomotional impairments in the setting of experimental stroke.

About the Authors

P. Yu. Povarnina
FSBSI «Federal research center for innovator and emerging biomedical and pharmaceutical technologies»
Russian Federation

Polina Yu. Povarnina – PhD, Cand. Sci. (Biol.), Leading Research Scientist of the Laboratory of Peptide Bioregulators of the Medicinal Chemistry Department

Moscow



N. M. Sazonova
FSBSI «Federal research center for innovator and emerging biomedical and pharmaceutical technologies»
Russian Federation

Nellya M. Sazonova – PhD, Cand. Sci. (Chemistry), Senior Research Scientist of the Laboratory of Peptide Bioregulators of the Medicinal Chemistry Department 

Moscow



D. M. Nikiforov
FSBSI «Federal research center for innovator and emerging biomedical and pharmaceutical technologies»
Russian Federation

Dmitriy M. Nikiforov – Junior Research Scientist of the Laboratory of Peptide Bioregulators of the Medicinal Chemistry Department

Moscow



T. A. Gudasheva
FSBSI «Federal research center for innovator and emerging biomedical and pharmaceutical technologies»
Russian Federation

Tatiana A. Gudasheva – PhD, Dr. Sci. (Biology), Professor, RAS corresponding member, Head of medicinal chemistry department

Moscow



V. L. Dorofeev
FSBSI «Federal research center for innovator and emerging biomedical and pharmaceutical technologies»
Russian Federation

Vladimir L. Dorofeev – PhD, Dr. Sci. (Pharm), Professor, Acting General Director

Moscow



References

1. Cao JY, Lin Y, Han YF, et al. Expression of nerve growth factor carried by pseudotyped lentivirus improves neuron survival and cognitive functional recovery of post-ischemia in rats. CNS Neurosci Ther. 2018;24(6):508-518. doi: 10.1111/cns.12818.

2. Guan J, Tong W, Ding W, et al. Neuronal regeneration and protection by collagen-binding BDNF in the rat middle cerebral artery occlusion model. Biomaterials. 2012;33(5):1386-1395. doi: 10.1016/j.biomaterials.2011.10.073.

3. Zhu W, Cheng S, Xu G, et al. Intranasal nerve growth factor enhances striatal neurogenesis in adult rats with focal cerebral ischemia. Drug Deliv. 2011;18(5):338-343. doi: 10.3109/10717544.2011.557785.

4. El Ouaamari Y, Van den Bos J, Willekens B, et al. Neurotrophic Factors as Regenerative Therapy for Neurodegenerative Diseases: Current Status, Challenges and Future Perspectives. Int J Mol Sci. 2023 Feb 15;24(4):3866. doi: 10.3390/ijms24043866.

5. Antipova TA, Gudasheva TA, Seredenin SB. In vitro study of neuroprotective properties of GK-2, a new original nerve growth factor mimetic. Bull Exp Biol Med. 2011;150(5):607-609. (In Russ.). doi: 10.1007/s10517-011-1202-6.

6. Gudasheva TA, Povarnina PY, Antipova TA, et al. Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction. J Biomed Sci. 2015;22:106. doi: 10.1186/s12929-015-0198-z.

7. Antipova TA, Deev IE, Gudasheva TA, et al. Evidence of the selectivity of interaction of nerve growth factor dipeptide mimetic GK-2 with TrkA receptor using TrkA and TrkB knockout HT-22 cells. Pharmaceutical Chemistry Journal. 2023;56:1568-1572. (In Russ.). doi: 10.1007/s11094-023-02828-x.

8. Seredenin SB, Romanova GA, Gudasheva TA, et al. Neuroprotective and antiamnestic effect of nerve growth factor dipeptide mimetic GK-2 in experimental ischemic infarction of brain cortex. Bull Exp Biol Med. 2011;150(4):432-435. (In Russ.). doi: 10.1007/s10517-011-1161-y.

9. Povarnina PYu, Gudasheva TA, Vorontsova ON, et al. Neuroprotective effects of a dipeptide mimetic on the GK-2 nerve growth factor in model of permanentcommon carotid artery occlusion in rats. Exper Clin Pharmacol. 2012;75(9):15-20. (In Russ.). doi: 10.30906/0869-2092-2012-75-9-15-20.

10. Zarzhetskiy YuV, Avruschenko MSh. Moroz VV, et al. Effectiveness of GK-2, a Nerve Growth Factor Mimetic, in Preventing Post-Resuscitation Changes in the Brain. Bull Exp Biol Med. 2015 Aug;159(4):453-455. (In Russ.). doi: 10.1007/s10517-015-2989-3.

11. Seredenin SB, Povarnina PYu, Gudasheva TA. An experimental evaluation of the therapeutic window of the neuroprotective activity of a low-molecular nerve growth factor mimetic GK-2. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(7):49-53. (In Russ.). doi: 10.17116/jnevro20181187149.

12. Gudasheva TA, Povarnina PY, Volkova AA, et al. A Nerve Growth Factor Dipeptide Mimetic Stimulates Neurogenesis and Synaptogenesis in the Hippocampus and Striatum of Adult Rats with Focal Cerebral Ischemia. Acta Naturae. 2019 Jul-Sep;11(3):31-37. (In Russ.). doi: 10.32607/20758251-2019-11-3-31-37.

13. Ayerbe L, Ayis S, Wolfe CD, Rudd AG. Natural history, predictors and outcomes of depression after stroke: systematic review and meta-analysis. Br J Psychiatry. 2013;202(1):14-21. doi: 10.1192/bjp.bp.111.107664.

14. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8(11):1006-1018. doi: 10.1016/S1474-4422(09)70236-4.

15. Sazonova NM, Tarasyuk AV, Kurilov DV, et al. Synthesis of two-dimensional dipeptide mimetic of nerve growth factor: new potential neuroprotective drug. Pharmaceutical Chemistry Journal. 2015;49(7):10-19. (In Russ.). doi: 10.1007/s11094-015-1301-1.

16. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84-91. doi: 10.1161/01.str.20.1.84.

17. Seredenin SB, Gudasheva TA. The development of a pharmacologically active low-molecular mimetic of the nerve growth factor. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(6):63-70. (In Russ.). doi: 10.17116/jnevro20151156163-70.

18. Li W, Huang R, Shetty RA, et al. Transient focal cerebral ischemia induces long-term cognitive function deficit in an experimental ischemic stroke model. Neurobiol Dis. 2013;59:18-25. doi: 10.1016/j.nbd.2013.06.014.

19. Kuts R, Melamed I, Shiyntum HN, et al. A Middle Cerebral Artery Occlusion Technique for Inducing Post-stroke Depression in Rats. J Vis Exp. 2019 May 22;(147). doi: 10.3791/58875.

20. Ifergane G, Boyko M, Frank D, et al. Biological and Behavioral Patterns of Post-Stroke Depression in Rats. Can J Neurol Sci. 2018;45(4):451-461. doi: 10.1017/cjn.2017.302.

21. Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res. 1988;31(1):47-59. doi: 10.1016/0166-4328(88)90157-x.

22. Beldjoud H, Barsegyan A, Roozendaal B. Noradrenergic activation of the basolateral amygdala enhances object recognition memory and induces chromatin remodeling in the insular cortex. Front Behav Neurosci. 2015;9:108. doi: 10.3389/fnbeh.2015.00108.

23. Henry BL, Minassian A, Young JW, et al. Cross-species assessments of motor and exploratory behavior related to bipolar disorder. Neurosci Biobehav Rev. 2010;34(8):1296-1306. doi: 10.1016/j.neubiorev.2010.04.002.

24. Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol. 1978;47(4):379-391. doi: 10.1016/0014-2999(78)90118-8.

25. Kawai H, Kodaira N, Tanaka C, et al. Time of Administration of Acute or Chronic Doses of Imipramine Affects its Antidepressant Action in Rats. J Circadian Rhythms. 2018;16:5. doi: 10.5334/jcr.156.

26. Scheggi S, De Montis MG, Gambarana C. Making Sense of Rodent Models of Anhedonia. Int J Neuropsychopharmacol. 2018 Nov 1;21(11):1049-1065. doi: 10.1093/ijnp/pyy083.

27. Volkova AA, Povarnina, PY, Nikiforov DM et al. Comparative study of the mnemotropic activity of dimeric dipeptide mimetics of individual NGF and BDNF loops using a new-object recognition test in rats. Pharmaceutical Chemistry Journal. 2002;56:429-432. (In Russ.). doi: 10.1007/s11094-022-02656-5.

28. Mezhlumyan AG, Tallerova AV, Povarnina PY, et al. Antidepressant-like Effects of BDNF and NGF Individual Loop Dipeptide Mimetics Depend on the Signal Transmission Patterns Associated with Trk. Pharmaceuticals (Basel). 2022;15(3):284. doi: 10.3390/ph15030284.

29. Lin Y, Wan JQ, Gao G, et al. Direct hippocampal injection of pseudo lentivirus-delivered nerve growth factor gene rescues the damaged cognitive function after traumatic brain injury in the rat. Biomaterials. 2015;69:148-157. doi: 10.1016/j.biomaterials.2015.08.010.

30. Meng G, Ma X, Li L, et al. Predictors of early-onset post-ischemic stroke depression: a cross-sectional study. BMC Neurol. 2017;17(1):199. doi: 10.1186/s12883-017-0980-5.

31. Shishkina GT, Kalinina TS, Gulyaeva NV, et al. Changes in gene expression and neuroinflammation in the hippocampus after focal brain ischemia: involvement in the long-term cognitive and mental disorders. Biochemistry. 2021;86(6):657-666. (In Russ.). doi: 10.1134/S0006297921060043.

32. Phelps EA. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol. 2004 Apr;14(2):198-202. doi: 10.1016/j.conb.2004.03.015.

33. Gemmell E, Bosomworth H, Allan L, et al. Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias. Stroke. 2012 Mar;43(3):808-14. doi: 10.1161/STROKEAHA.111.636498.

34. Kliper E, Bashat DB, Bornstein NM, et al. Cognitive decline after stroke: relation to inflammatory biomarkers and hippocampal volume. Stroke. 2013;44(5):1433-1435. DOI:10.1161/STROKEAHA.111.000536.

35. Cobb JA, Simpson J, Mahajan GJ, et al. Hippocampal volume and total cell numbers in major depressive disorder. J Psychiatr Res. 2013;47(3):299-306. doi: 10.1016/j.jpsychires.2012.10.020.

36. Odaka H, Adachi N, Numakawa T. Impact of glucocorticoid on neurogenesis. Neural Regen Res. 2017;12(7):1028-1035. doi: 10.4103/1673-5374.211174.

37. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302(5651):1760-1765. doi: 10.1126/science.1088417.

38. Vasic V, Schmidt MHH. Resilience and Vulnerability to Pain and Inflammation in the Hippocampus. Int J Mol Sci. 2017;18(4):739. doi: 10.3390/ijms18040739.

39. Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility — linking memory and mood. Nat Rev Neurosci. 2017;18(6):335-346. doi: 10.1038/nrn.2017.45.

40. Frielingsdorf H, Simpson DR, Thal LJ, Pizzo DP. Nerve growth factor promotes survival of new neurons in the adult hippocampus. Neurobiol Dis. 2007;26(1):47-55. doi: 10.1016/j.nbd.2006.11.015.

41. Conner JM, Franks KM, Titterness AK, et al. NGF is essential for hippocampal plasticity and learning. J Neurosci. 2009;29(35):10883-10889. doi: 10.1523/JNEUROSCI.2594-09.2009.

42. Tirassa P. The nerve growth factor administrated as eye drops activates mature and precursor cells in subventricular zone of adult rats. Arch Ital Biol. 2011;149(2):205-213. doi: 10.4449/aib.v149i1.1359.

43. Patz S, Wahle P. Neurotrophins induce short-term and long-term changes of cortical neurotrophin expression. Eur J Neurosci. 2004;20(3):701-708. doi: 10.1111/j.1460-9568.2004.03519.x.

44. Eriksdotter Jönhagen M, Nordberg A, Amberla K, et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dement Geriatr Cogn Disord. 1998 Sep-Oct;9(5):246-57. doi: 10.1159/000017069.

45. Taglialatela G, Foreman PJ, Perez-Polo JR. Effect of a long-term nerve growth factor treatment on body weight, blood pressure, and serum corticosterone in rats. Int J Dev Neurosci. 1997;15(6):703-710. doi: 10.1016/s0736-5748(97)00032-4.


Review

For citations:


Povarnina P.Yu., Sazonova N.M., Nikiforov D.M., Gudasheva T.A., Dorofeev V.L. A study on the mnemotropic and antidepressant-like effects of the low-molecular-weight mimetic of nerve growth factor, dipeptide GK-2, in experimental ischemic stroke. Pharmacokinetics and Pharmacodynamics. 2024;(1):14-22. (In Russ.) https://doi.org/10.37489/2587-7836-2024-1-14-22. EDN: LBOTWJ

Views: 201


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)