Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Combination of a high-carbohydrate diet and streptozotoc in for modeling type 2 diabetes in Wistar rats

https://doi.org/10.37489/2587-7836-2023-2-54-59

Abstract

Relevance. To conduct a preclinical evaluation of the effectiveness of antidiabetic drugs, models simulating the pathogenesis and main manifestations of diabetes mellitus (DM) in humans are needed. The streptozotocin (STZ) model, which has received the most widespread use in the experiment, does not allow reproducing the stepwise multifactorial development of type 2 diabetes. Goal. To develop a model of type 2 diabetes using a high-carbohydrate diet in combination with a subthreshold dose of STZ in Wistar rats, characterized by hyperglycemia and insulin resistance. Methods. The animals of the control group (n = 20) received water as a drink, and the experimental group (n = 20) received a 10 % solution of fructose. After 14 days, 10 animals from each group were injected with STZ at a dose of 35 mg/kg. The blood glucose level was determined weekly. To assess insulin resistance, a oral glucose tolerance test was performed before and after the administration of STZ. Results. It was found that keeping rats on a high-carbohydrate diet for two weeks leads to a violation of glucose tolerance, which indicates insulin resistance. The introduction of STZ at a subthreshold dose of 35 mg/kg to animals on a standard diet causes an increase in the glycemic drop to 13.2 mmol/l, while the same dose of STZ against the background of a high-carbohydrate diet causes an increase in the level of hyperglycemia to 22.9 mmol/l and increases insulin resistance. Conclusion. The synergism of a high-carbohydrate diet and low doses of STZ makes it possible to obtain a model of type 2 diabetes mellitus that reproduces not only basal hyperglycemia, but also impaired glucose tolerance, which more fully corresponds to the process of developing type 2 diabetes in humans.

About the Authors

S. V. Ivanov
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Sergei V. Ivanov - PhD, Cand. Sci. (Biology), Senior Researcher at the Laboratory of Psychopharmacology

Moscow



R. U. Ostrovskaya
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Rita U. Ostrovskaya - Dr. Sci (Med.), Chief Researcher of the Laboratory of Psychopharmacology

Moscow



References

1. Lenzen S. Animal models of human type 1 diabetes for evaluating combination therapies and successful translation to the patient with type 1 diabetes. Diabetes Metab Res Rev. 2017 Oct;33(7);1–13. DOI: 10.1002/dmrr.2915.

2. Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med. 2005 Apr;22(4):359–370. DOI: 10.1111/j.1464-5491.2005.01499.x.

3. Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc Pharmacol. 2015 Sep 1;70:5.47.1–5.47.20. DOI: 10.1002/0471141755.ph0547s70.

4. Rais N, Ved A, Ahmad R, Parveen K, Gautam GK, Bari DG, Shukla KS, Gaur R, Singh AP. Model of Streptozotocin-nicotinamide Induced Type 2 Diabetes: a Comparative Review. Curr Diabetes Rev. 2022;18(8): e171121198001. DOI: 10.2174/1573399818666211117123358.

5. Ostrovskaya RU, Ivanov SV, Gudasheva TA, Seredenin SB. A Novel Dipeptide NGF Mimetic GK-2 Selectively Activating the PI3K/AKT Signaling Pathway Promotes the Survival of Pancreatic β-Cells in a Rat Model of Diabetes. Acta Naturae. 2019 Jan-Mar;11(1):48–57. DOI: 10.32607/20758251-2019-11-1-48-57.

6. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Сахарный диабет 2 типа у взрослых. Сахарный диабет. 2020;23(2S):4–102. [Dedov II, Shestakova MV, Mayorov AY, et al. Diabetes mellitus type 2 in adults. Diabetes mellitus. 2020;23(2S):4–102. (In Russ).]. DOI: 10.14341/DM12507.

7. Sasase T, Pezzolesi MG, Yokoi N, Yamada T, Matsumoto K. Animal models of diabetes and metabolic disease. J Diabetes Res. 2013;2013:281928. DOI: 10.1155/2013/281928.

8. Тюренков И.Н., Куркин Д.В., Бакулин Д.А., Волотова Е.В., Шафеев М.А. Влияние агониста рецептора GPR119 на уровень глюкозы, массу тела и потребление пищи у животных с ожирением, обусловленным высокожировой и углеводной диетой. Проблемы эндокринологии. 2016;62(1):44–49. [Tyurenkov IN, Kurkin DV, Bakulin DA, Volotova EV, Chafeev MA. The influence of novel GPR119 agonist on body weight, food intake and glucose metabolism in obesity rats provoked high-fat and -carbohydrate diet. Problemy Endokrinologii. 2016;62(1):44–49. (In Russ).]. DOI: 10.14341/probl201662144-49.

9. Ivanov SV, Ostrovskaya RU, Koliasnikova KN, et al. Low molecular weight NGF mimetic GK-2 normalizes the parameters of glucose and lipid metabolism and exhibits a hepatoprotective effect on a prediabetes model in obese Wistar rats. Clin Exp Pharmacol Physiol. 2022 Oct;49(10):1116– 1125. DOI: 10.1111/1440-1681.13693.

10. Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018 Feb 1;128(2):545–555. DOI: 10.1172/JCI96702.

11. Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009 May;119(5):1322–1334. DOI: 10.1172/JCI37385.

12. Chong MF, Fielding BA, Frayn KN. Mechanisms for the acute effect of fructose on postprandial lipemia. Am J Clin Nutr. 2007 Jun;85(6):1511–1520. DOI: 10.1093/ajcn/85.6.1511.

13. Ohashi K, Munetsuna E, Yamada H, et al. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver. Biochem Biophys Res Commun. 2015 Dec 4-11;468(1-2):185–9. DOI: 10.1016/j.bbrc.2015.10.134.

14. Baena M, Sangüesa G, Dávalos A, et al. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues. Sci Rep. 2016 May 19;6:26149. DOI: 10.1038/srep26149.

15. Perry RJ, Camporez JG, Kursawe R, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015 Feb 12;160(4):745–758. DOI: 10.1016/j.cell.2015.01.012.

16. Kato T, Shimano H, Yamamoto T, et al. Palmitate impairs and eicosapentaenoate restores insulin secretion through regulation of SREBP-1c in pancreatic islets. Diabetes. 2008 Sep;57(9):2382–2392. DOI: 10.2337/db06-1806.

17. Catena C, Giacchetti G, Novello M, et al. Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension. Am J Hypertens. 2003 Nov;16(11 Pt 1):973–978. DOI: 10.1016/s0895-7061(03)01002-1.

18. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014 Jan 1;6(1):a009191. DOI: 10.1101/cshperspect.a009191.

19. Asipu A, Hayward BE, O'Reilly J, Bonthron DT. Properties of normal and mutant recombinant human ketohexokinases and implications for the pathogenesis of essential fructosuria. Diabetes. 2003 Sep;52(9):2426–32. DOI: 10.2337/diabetes.52.9.2426.

20. Nakagawa T, Hu H, Zharikov S, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2006 Mar;290(3):F625–31. DOI: 10.1152/ajprenal.00140.2005.

21. Basaranoglu M, Basaranoglu G, Sabuncu T, Sentürk H. Fructose as a key player in the development of fatty liver disease. World J Gastroenterol. 2013 Feb 28;19(8):1166–1172. DOI: 10.3748/wjg.v19.i8.1166.


Review

For citations:


Ivanov S.V., Ostrovskaya R.U. Combination of a high-carbohydrate diet and streptozotoc in for modeling type 2 diabetes in Wistar rats. Pharmacokinetics and Pharmacodynamics. 2023;(2):54-59. (In Russ.) https://doi.org/10.37489/2587-7836-2023-2-54-59

Views: 262


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)