Исследование антиаритмической активности линейных алкоксифенилазаалканов на модели реперфузионных аритмий у крыс
https://doi.org/10.37489/2587-7836-2023-2-20-28
Аннотация
Проведён анализ взаимосвязи структуры и антиаритмической активности бис-алкоксифенилтриазаалканов 1 и бис-алкоксифенилдиаза-алканов 2 на модели реперфузионной аритмии у крыс. Установлено, что ключевыми требованиями к активности соединений на данной модели является использование 2,3,4-триметоксифенильных ароматических фармакофоров и наличие центрального атома азота в линкере. Наиболее активными соединениями оказались тригидрохлорид N1–(2,3,4-триметоксибензил)-N2–{2-[(2,3,4-триметоксибензил)амино]этил}-1,2-этандиамина и тригидрохлорид N1–(2,3,4-триметоксибензил)-N3–{3-[(2,3,4-триметоксибензил)амино]этил}-1,3-пропандиамина (шифры АЛМ-802 и АЛМ-811), значимо (p < 0,001) препятствовавшие развитию желудочковых тахикардий и/или фибрилляций желудочков.
Об авторах
В. В. БарчуковРоссия
Барчуков Владимир Валерьевич - н. с. лаборатории фармакологического скрининга
Москва
В. Н. Столярук
Россия
Столярук Валерий Николаевич - к. м. н., с. н. с. лаборатории фармакологического скрининга
Москва
И. Б. Цорин
Россия
Цорин Иосиф Борисович - д. б. н., в. н. с. лаборатории фармакологического скрининга
Москва
М. Б. Вититнова
Россия
Вититнова Марина Борисовна - к. б. н., с. н. с. лаборатории фармакологического скрининга
Москва
С. А. Крыжановский
Россия
Крыжановский Сергей Александрович - д. м. н., зав. лабораторией фармакологического скрининга
Москва
Т. Ю. Воробьева
Россия
Воробьева Татьяна Юрьевна - м. н. с. лаборатории тонкого органического синтеза отдела химии лекарственных средств
Москва
В. Е. Бирюкова
Россия
Бирюкова Валентина Евгеньевна - м. н. с. лаборатории тонкого органического синтеза отдела химии лекарственных средств
Москва
Г. В. Мокров
Россия
Мокров Григорий Владимирович - к. х. н., в. н. с. лаборатории тонкого органического синтеза отдела химии лекарственных средств
Москва
Список литературы
1. Мокров Г. В. Кардиопротекторные средства с биароматической структурой. Часть 1. Блокаторы кальциевых каналов. Фармакокинетика и фармакодинамика. 2021;(4):3–17. [Mokrov GV. Сardioprotective agents with biaromatic structure. Part 1. Calcium channel blockers. Farmakokinetika i farmakodinamika = Pharmacokinetics and pharmacodynamics. 2021;(4):3–17. (In Russ).]. DOI: 10.37489/2587-7836-2021-4-3-17.
2. Мокров Г. В. Кардиопротекторные средства с биароматической структурой. Часть 2. Блокаторы HCN-каналов. Фармакокинетика и фармакодинамика. 2022;(2):03–10. [Mokrov GV. Сardioprotective agents with biaromatic structure. Part 2. HCN channel blockers. Farmakokinetika i farmakodinamika = Pharmacokinetics and pharmacodynamics. 2022;(2):03–10. (In Russ).]. DOI: 10.37489/2587-7836-2022-2-03-10.
3. Мокров Г. В. Кардиопротекторные средства с биароматической структурой. Часть 3. Блокаторы натриевых каналов. Фармакокинетика и фармакодинамика. 2022;(3):3–9. [Mokrov GV. Сardioprotective agents with biaromatic structure. Part 3. Sodium channel blockers. Farmakokinetika i farmakodinamika = Pharmacokinetics and pharmacodynamics. 2022;(3):3–9. (In Russ).]. DOI: 10.37489/2587-7836-2022-3-3-9.
4. Мокров Г. В. Кардиопротекторные средства с биароматической структурой. Часть 4. Блокаторы и модуляторы калиевых hERG-каналов. Фармакокинетика и фармакодинамика. 2022;(4):3–19. [Mokrov GV. Сardioprotective agents with biaromatic structure. Part 4. Potassium hERG channels blockers and modulators. Farmakokinetika i farmakodinamika = Pharmacokinetics and pharmacodynamics. 2022;(4):3–19. (In Russ).]. DOI: 10.37489/2587-7836-2022-4-3-19.
5. Мокров ГВ. Кардиопротекторные средства с биароматической структурой. Часть 5. Блокаторы калиевых каналов Kv1.5. Фармакокинетика и Фармакодинамика. 2023. (в печати). [Mokrov GV. Сardioprotective agents with biaromatic structure. Part 5. Kv1.5 potassium channel blockers. Farmakokinetika i farmakodinamika = Pharmacokinetics and pharmacodynamics. 2023. (in press). (In Russ).].
6. Wiśniowska B, Mendyk A, Fijorek K, Glinka A, Polak S. Predictive model for L-type channel inhibition: multichannel block in QT prolongation risk assessment. J Appl Toxicol. 2012 Oct;32(10):858–66. DOI: 10.1002/jat.2784.
7. Мокров Г. В., Лихошерстов А. М., Барчуков В. В. и др. Синтез и кардиотропная активность линейных метоксифенилтриазаалканов. Химико-фармацевтический журнал. 2019;53(6):16–23. (2019) [Mokrov GV, Likhosherstov AM, Barchukov VV, et al. Synthesis and cardiotropic activity of linear metoxyphenyl triazaalkanes. Pharmaceutical Chemistry Journal. 2019;53(6):16–23. (In Russ).]. DOI: 10.30906/0023-1134-2019-53-6-16-23.
8. Мокров Г. В., Лихошерстов А. М., Барчуков В. В. и др. Синтез и кардиотропная активность 1 (метоксибензил)-4-[2-((метоксибензил) амино)этил]пиперазинов. Химико-фармацевтический журнал. 2019;53(9):9–14. [Mokrov GV, Likhosherstov AM, Barchukov VV, et al. Synthesis and cardiotropic activity of 1-(methoxybenzyl)-4-[2-((methoxybenzyl)amino)ethyl]piperazines. Pharmaceutical Chemistry Journal. 2019;53(9):9–14. (In Russ).]. DOI: 10.30906/0023-1134-2019-53-9-9-14.
9. Мокров Г. В., Лихошерстов А. М., Барчуков В. В. и др. Синтез и кардиотропная активность циклических метоксифенилтриазаалканов. Химико-фармацевтический журнал. 2019;53(7):7–12. [Mokrov GV, Likhosherstov AM, Barchukov VV, et al. Synthesis and cardiotropic activity of cyclic methoxyphenyl triazaalkanes. Pharmaceutical Chemistry Journal. 2019;53(7):7–12. (In Russ).]. DOI: 10.30906/0023-1134-2019-53-7-7-12.
10. Мокров Г. В., Лихошерстов А. М., Барчукова Е. И. и др. Синтез и кардиотропная активность бис-(2,3,4-триметоксибензил)алкандиаминов. Химико-фармацевтический журнал. 2021;55(4):19–24. [Mokrov GV, Likhosherstov AM, Barchukova EI, et al. Synthesis and cardiotropic activity of bis-(2,3,4-trimethoxybenzyl)alkanediamines. Pharmaceutical Chemistry Journal. 2021;55(4):19–24. (In Russ).]. DOI: 10.30906/0023-1134-2021-55-4-19-24.
11. Цорин И. Б., Теплов И. Ю., Зинченко В. П. и др. Механизмы антиаритмического действия соединения АЛМ-802. Бюлл. эксп. биол. мед. 2022;174(8):179–183. [Tsorin IB, Teplov IYu, Zinchenko VP, et al. Mechanisms of the antiarrhythmic action of the compound ALM-802. Bull Exp Biol Med. 2022;174(8):179–183. (In Russ).]. DOI: 10.47056/0365-9615-2022-174-8-179-183.
12. Кожевникова Л. М., Барчуков В. В., Семенова Н. П. и др. Изучение молекулярных механизмов, лежащих в основе кардиопротективного действия соединения АЛМ-802. Бюлл. эксп. биол. мед. 2020;170(9):301–305. [Kozhevnikova LM, Barchukov VV, Semenova NP, et al. Study of the molecular mechanisms underlying the cardioprotective action of the compound ALM-802. Bull Exp Biol Med. 2020;170(9):301–305. (In Russ).]. DOI: 10.47056/0365-9615-2020-170-9-301-305.
13. Руководство по проведению доклинических исследований лекарственных средств. Часть первая. Миронов А.Н. (ред.). М.: Гриф и К, 2013. С. 395 [Guidelines for conducting preclinical studies of drugs. Part one. Mironov AN (ed.). Moscow: Grif and K, 2013. (In Russ).].
14. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960;70:68–78.
15. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013 Jan;123(1):92–100. DOI: 10.1172/JCI62874.
16. Lemasters JJ, Bond JM, Chacon E, Harper IS, Kaplan SH, Ohata H, Trollinger DR, Herman B, Cascio WE. The pH paradox in ischemia-reperfusion injury to cardiac myocytes. EXS. 1996;76:99–114. DOI: 10.1007/978-3-0348-8988-9_7.
17. Bond JM, Chacon E, Herman B, Lemasters JJ. Intracellular pH and Ca2+ homeostasis in the pH paradox of reperfusion injury to neonatal rat cardiac myocytes. Am J Physiol. 1993 Jul;265(1 Pt 1):C129–37. DOI: 10.1152/ajpcell.1993.265.1.C129.
18. Mattiazzi A, Argenziano M, Aguilar-Sanchez Y, Mazzocchi G, Escobar AL. Ca2+ Sparks and Ca2+ waves are the subcellular events underlying Ca2+ overload during ischemia and reperfusion in perfused intact hearts. J Mol Cell Cardiol. 2015 Feb;79:69–78. DOI: 10.1016/j.yjmcc.2014.10.011.
19. Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S, Khodayari H. Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies. Life Sci. 2016 Nov 15;165:43–55. DOI: 10.1016/j.lfs.2016.09.013.
20. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004 Oct;287(4):C817–33. DOI: 10.1152/ajpcell.00139.2004.
21. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014 Jul;94(3):909–50. DOI: 10.1152/physrev.00026.2013.
22. Ling H, Gray CB, Zambon AC, et al. Ca2+/Calmodulin-dependent protein kinase II δ mediates myocardial ischemia/reperfusion injury through nuclear factor-κB. Circ Res. 2013 Mar 15;112(6):935–44. DOI: 10.1161/CIRCRESAHA.112.276915.
23. Becerra R, Román B, Di Carlo MN, et al. Reversible redox modifications of ryanodine receptor ameliorate ventricular arrhythmias in the ischemic-reperfused heart. Am J Physiol Heart Circ Physiol. 2016 Sep 1;311(3):H713–24. DOI: 10.1152/ajpheart.00142.2016.
Рецензия
Для цитирования:
Барчуков В.В., Столярук В.Н., Цорин И.Б., Вититнова М.Б., Крыжановский С.А., Воробьева Т.Ю., Бирюкова В.Е., Мокров Г.В. Исследование антиаритмической активности линейных алкоксифенилазаалканов на модели реперфузионных аритмий у крыс. Фармакокинетика и Фармакодинамика. 2023;(2):20-28. https://doi.org/10.37489/2587-7836-2023-2-20-28
For citation:
Barchukov V.V., Stolyaruk V.N., Tsorin I.B., Vititnova M.B., Kryzhanovskii S.А., Vorobieva T.Yu., Biryukova V.E., Mokrov G.V. Study of the antiarrhythmic activity of linear alkoxyphenylazalkanes in the model of reperfusion arrythmias in rats. Pharmacokinetics and Pharmacodynamics. 2023;(2):20-28. (In Russ.) https://doi.org/10.37489/2587-7836-2023-2-20-28