Сardioprotective agents with biaromatic structure. Part 3. Sodium channel blockers
https://doi.org/10.37489/2587-7836-2022-3-3-9
Abstract
This review continues a series of reviews on the analysis of compounds with cardioprotective properties in a number of biaromatic structures, which include a range of sodium channel blockers. Among voltage-gated sodium channels, the Nav1.5 isoform is the most abundant in the heart. Sodium channel blockers have historically been called "class I antiarrhythmics". Among the compounds of this type, a biaromatic structure mainly have the Nav1.5 late current blockers belonging to the Id subclass of antiarrhythmic drugs. Leader molecules from this subgroup, such as ranolazine, GS-458967, and F15845, reduce action potential recovery time and suppress trigger activity induced by early post-depolarization. They are effective for the treatment of stable angina and ventricular tachycardia.
About the Author
G. V. MokrovRussian Federation
Mokrov Grigory V. PhD, Cand. Sci. (Chemical), Leading researcher of the fine organic synthesis laboratory at the drug chemistry department
SPIN code: 8755-7666
Moscow
References
1. Mokrov GV. Сardioprotective agents with biaromatic structure. Part 1. Calcium channel blockers. Farmako-kinetika i farmakodinamika = Pharmacokinetics and pharmacodynamics. 2021;(4):3–17. (In Russ).. DOI: 10.37489/2587-7836-2021-4-3-17
2. Mokrov GV. Сardioprotective agents with biaromatic structure. Part 2. HCN channel blockers. Farmakokinetika i farmakodinamika = Pharmacokinetics and pharmacodynamics. 2022;(2):03–10. (In Russ). DOI: 10.37489/2587-7836-2022-2-03-10
3. Beyder A, Rae JL, Bernard C, Strege PR, Sachs F, Farrugia G. Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J Physiol. 2010;588(24):4969–4985. DOI: 10.1113/JPHYSIOL.2010.199034
4. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and Structure-Function Relationships of Voltage-Gated Calcium Channels. Pharmacol Rev. 2005;57(4):411–425. DOI: 10.1124/PR.57.4.5
5. Hugues A. Roles and regulation of the cardiac sodium channel Nav1.5: Recent insights from experimental studies. Cardiovasc Res. 2007;76(3):381–389. DOI: 10.1016/J.CARDIORES.2007.07.019/2/76-3-381-FIG1.GIF
6. Remme CA, Verkerk AO, Hoogaars WMH, et al. The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Basic Res Cardiol. 2009;104(5):511–522. DOI: 10.1007/S00395-009-0012-8/FIGURES/6
7. Lei M, Wu L, Terrar DA, Huang CLH. Modernized classification of cardiac antiarrhythmic drugs. Circulation. 2018;138(17):1879–1896. DOI: 10.1161/CIRCULATIONAHA.118.035455
8. Knollmann BC, Roden DM. Antiarrhythmic Drugs. In: Brunton LL, Hilal-Dandan R, Knollmann BC, eds. Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 13e. McGraw-Hill Education; 2017. http://accessmedicine.mhmedical.com/content.aspx?aid=1162538774
9. Gillis A, Singh B, Smith T, et al. Cardiac Electrophysiology: From Cell to Bedside. (Zipes D JJ, ed.). Saunders; 4th edition; 2004.
10. Horváth B, Hézső T, Kiss D, et al. Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Front Pharmacol. 2020;11:413. DOI: 10.3389/FPHAR.2020.00413
11. Antzelevitch C, Nesterenko V, Shryock JC, Rajamani S, Song Y, Belardinelli L. The role of late I Na in development of cardiac arrhythmias. Handb Exp Pharmacol. 2014;221:137–168. DOI: 10.1007/978-3-642-41588-3_7
12. Kluge AF, Clark RD, Strosberg AM, Pascal JCG, Whiting R. US Patent 4567264. Published online 1986.
13. Cocco G, Rousseau MF, Bouvy T, et al. Effects of a new metabolic modulator, ranolazine, on exercise tolerance in angina pectoris patients treated with beta-blocker or diltiazem. J Cardiovasc Pharmacol. 1992;20(1):131–138.
14. Reed M, Kerndt CC, Gopal S, Nicolas D. Ranolazine. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. StatPearls Publishing; 2021. Accessed October 12, 2021. https://www.ncbi.nlm.nih.gov/books/ NBK507828/
15. Bazoukis G, Tse G, Letsas KP, et al. Impact of ranolazine on ventricular arrhythmias – A systematic review. J Arrhythmia. 2018;34(2):124–128. DOI: 10.1002/JOA3.12031
16. López-Ortiz M, Monsalvo I, Demare P, et al. Synthesis of Ranolazine Derivatives Containing the (1S,4S)-2,5-Diazabicyclo[2.2.1]Heptane Moiety and Their Evaluation as Vasodilating Agents. Chem Biol Drug Des. 2014;83(6):710–720. DOI: 10.1111/CBDD.12285
17. Garner JA, Hearse DJ, Bernier M. R56865, a potent new antiarrhythmic agent, effective during ischemia and reperfusion in the rat heart. J Cardiovasc Pharmacol. 1990;16(3):468–479. DOI: 10.1097/00005344-199009000-00018
18. Le Grand B, Coulombe A, John GW. Late sodium current inhibition in human isolated cardiomyocytes by R 56865. J Cardiovasc Pharmacol. 1998;31(5):800–804. DOI: 10.1097/00005344-199805000-00021
19. Létienne R, Vié B, Le Grand B. Pharmacological characterisation of sodium channels in sinoatrial node pacemaking in the rat heart. Eur J Pharmacol. 2006;530(3):243–249. DOI: 10.1016/J.EJPHAR.2005.11.035
20. Himmel HM, Wilhelm D, Ravens U. Effects of R56865 on membrane currents in isolated ventricular cardiomyocytes of the guinea-pig. Eur J Pharmacol. 1990;187(2):235–240. DOI: 10.1016/0014-2999(90)90010-4
21. Kehrbach W, Mlinaric M, Ziegler D, Brueckner R, Bielenberg W. US Patent 5547967. Published online 1996.
22. John GW, Létienne R, Grand B Le, et al. KC 12291: An Atypical Sodium Channel Blocker with Myocardial Antiischemic Properties. Cardiovasc Drug Rev. 2004;22(1):17–26. DOI: 10.1111/J.1527-3466.2004.TB00129.X
23. Decking UKM, Hartmann M, Rose H, Brückner R, Meil J, Schrader J. Cardioprotective actions of KC 12291 I. Inhibition of voltage-gated Na+ channels in ischemia delays myocardial Na+ overload. Naunyn Schmiedebergs Arch Pharmacol. 1998;358(5):547–553. DOI: 10.1007/PL00005291
24. Le Grand B, Pignier C, Létienne R, et al. Sodium late current blockers in ischemia reperfusion: is the bullet magic? J Med Chem. 2008;51(13):3856–3866. DOI: 10.1021/JM800100Z
25. Catterall WA. From Ionic Currents to Molecular Mechanisms: The Structure and Function of Voltage-Gated Sodium Channels. Neuron. 2000;26(1):13–25. DOI: 10.1016/S0896-6273(00)81133-2
26. Vié B, Sablayrolles S, Létienne R, et al. 3-(R)-[3-(2- Methoxyphenylthio-2-(S)-methylpropyl]amino-3,4-dihydro-2H-1,5- benzoxathiepine Bromhydrate (F 15845) Prevents Ischemia-Induced Heart Remodeling by Reduction of the Intracellular Na+ Overload. J Pharmacol Exp Ther. 2009;330(3):696–703. DOI: 10.1124/JPET.109.153122
27. Vacher B, Pignier C, Létienne R, Verscheure Y, Grand B Le. F 15845 inhibits persistent sodium current in the heart and prevents angina in animal models. Br J Pharmacol. 2009;156(2):214–225. DOI: 10.1111/ J.1476-5381.2008.00062.X
28. Pignier C, Rougier JS, Vié B, et al. Selective inhibition of persistent sodium current by F 15845 prevents ischaemia-induced arrhythmias. Br J Pharmacol. 2010;161(1):79–91. DOI: 10.1111/J.1476-5381.2010.00884.X
29. Koltun DO, Parkhill EQ, Elzein E, et al. Discovery of triazolopyridine GS-458967, a late sodium current inhibitor (Late INai) of the cardiac NaV 1.5 channel with improved efficacy and potency relative to ranolazine. Bioorg Med Chem Lett. 2016;26(13):3202–3206. DOI: 10.1016/J.BMCL.2016.03.101
30. Koltun DO, Parkhill EQ, Elzein E, et al. Discovery of triazolopyridinone GS-462808, a late sodium current inhibitor (Late INai) of the cardiac Nav1.5 channel with improved efficacy and potency relative to ranolazine. Bioorg Med Chem Lett. 2016;26(13):3207–3211. DOI: 10.1016/J.BMCL.2016.03.096
31. Zablocki JA, Elzein E, Li X, et al. Discovery of Dihydrobenzoxazepinone (GS-6615) Late Sodium Current Inhibitor (Late INai), a Phase II Agent with Demonstrated Preclinical Anti-Ischemic and Antiarrhythmic Properties. J Med Chem. 2016;59(19):9005–9017. DOI: 10.1021/ACS.JMEDCHEM.6B00939
Review
For citations:
Mokrov G.V. Сardioprotective agents with biaromatic structure. Part 3. Sodium channel blockers. Pharmacokinetics and Pharmacodynamics. 2022;(3):3-9. (In Russ.) https://doi.org/10.37489/2587-7836-2022-3-3-9