Application of the AlphaScreen and AlphaLisa method in drug development and pharmacokinetic studies
https://doi.org/10.37489/2587-7836-2022-1-44-54
Abstract
Drug development requires high-tech, simple, and sensitive methods. AlphaLISA method was announced as a universal method that would fit the listed criteria. However, research of other works on the pharmacokinetics of drugs related to this method showed a small number of pharmacokinetic studies in clinical trials. In this review, we focused on not only the positive aspects of the Alpha method, but also its disadvantages.
About the Authors
R. T. MukhametshinaRussian Federation
Regina T. Mukhametshina, PhD Biological Sci., junior researcher
Vladimir region
S. D. Kopein
Russian Federation
Damir S. Kopein, PhD Biological Sci., research scientist
Vladimir region
V. M. Simonov
Russian Federation
Vladimir M. Simonov, senior researcher
Vladimir region
References
1. Waller H., Chatterji U., Gallay P. et al. The use of AlphaLISA technology to detect interaction between hepatitis C virus encoded NS5A and cyclophilin A. J Virol Methods. 2010; 165 (2): 202–210. DOI: 10.1016/j.jviromet.2010.01.020.
2. Vickers T. A., Crooke S. T. Development of a Quantitative BRET affinity assay for nucleic acid-protein interactions. PLoS One. 2016; 11 (8): e0161930. DOI: 10.1371/journal.pone.0161930.
3. Guenat S., Rouleau N., Bielmann C. et al. Homogeneous and nonradioactive high-throughput screening platform for the characterization of kinase inhibitors in cell lysates. J Biomol Screen. 2006; 11 (8): 1015–1026. DOI: 10.1177/1087057106294697.
4. Гильмиярова Ф. Н. Белок-лигандные взаимодействия: влияние минорных компонентов метаболизма / Ф. Н. Гильмиярова [и др.] // Siberian Medicl Review. – 2017. – (6): 12–21. [Gylmiyarova F. N., Ryskina E. A., Kolotieva N. A., Potekhina V. I., Gorbacheva I. V. Protein-ligand interactions: the influence of minor components of metabolism. Siberian Medicl Review. 2017; (6): 12–21. (In Russ).]. DOI: 10.20333/2500136-2017-6-12-21.
5. Coussens N. P., Auld D., Roby P. et al. Compound-mediated assay interferences in homogenous proximity assays. Assay Guidance Manual. Review. 2020; NBK553584.
6. Kimple M. E., Brill A. L., Pasker R. L. Overview of affinity tags for protein purification. Curr Protoc Protein Sci. 2013; 73: 9.9.1-9.9.23. DOI: 10.1002/0471140864.ps0909s73
7. Fairhead M., Howarth M. Site-specific biotinylation of purified proteins using BirA. Methods Mols Biol. 2015; 1266: 171–184. DOI: 10.1007/978-1-4939-2272-7_12.
8. Смирнова Д. В. Гибридные белки и конъюгаты на основе люциферазы светляков Luciola Mingrelica и их биоаналитическое применение: Диссертация на соискание ученой степени. – Хим. факультет МГУ им. М. В. Ломоносова. – Москва, 2015. [Smirnova D. V. Gibridnye belki i kon"yugaty na osnove lyutsiferazy svetlyakov Luciola Mingrelica i ikh bioanaliticheskoe primenenie. Dissertatsiya na soiskanie uchenoi stepeni. Khim. fakul'tet, MGU im. M. V. Lomonosova. Moscow; 2015. (In Russ)].
9. Mekler V., Kortkhonjia E., Mukhopadhyay J. et al. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell. 2002; 108 (5): 599–614. DOI: 10.1016/s0092-8674(02)00667-0.
10. Ha T., Enderle T., Ogletree D. F. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA. 1996; 93 (13): 6264–6268. DOI: 10.1073/pnas.93.13.6264.
11. Kalinin S., Peulen T., Sindbert S. et al. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat Methods. 2012; 9 (12): 1218–1225. DOI: 10.1038/nmeth.2222.
12. Hellenkamp B., Wortmann P., Kandzia F. et al. Multidomain structure and correlated dynamics determined by self-consistent FRET Networks. Nat Methods. 2017; 14 (2): 174–180. DOI: 10.1038/nmeth.4081.
13. Hellenkamp B., Schmid S., Doroshenko O. et el. Precision and accuracy of single-molecule FRET measurements – a multi-laboratory benchmark study. Nat Methods. 2018; 15 (9): 669–676. DOI: 10.1038/s41592-018-0085-0.
14. Machleidt T., Woodroofe C. C., Schwinn M. K. et al. NanoBRET – a novel BRET platform for the analysis of protein–protein interactions. ACS Chem Biol. 2015; 10 (8): 1797–1804. DOI: 10.1021/acschembio.5b00143.
15. Wang J., Ren J., Wu B. et al. Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling. Proc Natl Acad Sci USA. 2015; 112 (1): 148–153. DOI: 10.1073/pnas.1412089112.
16. Ergin E., Dogan A., Parmaksiz M. et al. Time-resolved fluorescence resonance energy transfer (TR-FRET) assays for biochemical processes. Curr Pharm Biotechnol. 2016; 17 (14): 1222–1230. DOI: 10.2174/1389201017666160809164527.
17. Ullman E. F., Kirakossian H., Singh S. et al. Luminescent oxygen channeling immunoassay: Measurement of particle binding kinetics by chemiluminescence. Proc Natl Acad Sci USA. 1994; 91 (12): 5426–5430. DOI: 10.1073/pnas.91.12.5426.
18. Gabriel D., Vernier M., Pfeifer M. J. et al. High throughput screening technologies for direct cyclic AMP measurement. Assay Drug Dev Technol. 2003; 1 (2): 291–303. DOI: 10.1089/15406580360545107.
19. Li Y., Cummings R.T., Cunningham B. R. Homogeneous assays for adenosine 5'-monophosphate-activated protein kinase. Anal Biochem. 2003; 321 (2): 151–156. DOI: 10.1016/s0003-2697(03)00397-x.
20. Prabhu L., Chen L., Wie H. et al. Development of AlphaLISA high throughput technique to screen for small molecule inhibitors targeting protein arginine methyltransferases. Mol Biosyst. 2017; 13 (12): 2509–2520. DOI: 10.1039/c7mb00391a.
21. Glickman J. F., Wu X., Mercuri R. et al. A comparison of ALPHAScreen, TR-FRET and TRF as assay methods for FXR nuclear receptors. J Biomol Screen. 2002; 7 (1): 3–10. DOI: 10.1177/108705710200700102.
22. Eglen R. M., Reisine T., Roby P. et al. The use of AlphaScreen technology in HTS: current status. Curr Chem Genomics. 2008; 1:2–10. DOI: 10.2174/1875397300801010002.
23. Prabhu L., Wei H., Chen L. et al. Adapting AlphaLISA high throughput screen to discover a novel small molecule inhibitor targeting protein arginine methyltransferase 5 in pancreatic and colorectal cancers. Oncotarget. 2017; 8 (25): 39963–39977. DOI: 10.18632/oncotarget.18102.
24. Ott C. A., Baljinnyam B., Zakharov A. V. et al. Cell lysate based AlphaLISA deubiquitinase assay platform for identification of small molecule inhibitors. ACS Chem Biol. 2017; 12 (9): 2399–2407. DOI: 10.1021/acschembio.7b00543.
25. Muneoka S., Nakamura R., Hoshino M. et al. Development of a novel immunoassay to select antibodies against intact membrane antigens by using the homogeneous AlphaLISA system. J Biosci Bioeng. 2018; 126 (4): 522–526. DOI: 10.1016/j.jbiosc.2018.04.018.
26. Yin H., Wang L., Liu H. L. ENO1 Overexpression in Pancreatic Cancer Patients and Its Clinical and Diagnostic Significance. Gastroenterol Res Pract. 2018; 2018: 3842198. DOI: 10.1155/2018/3842198.
27. Yoshida Y., Hiwasa T., Machida T. et al. Elevation of autoantibody in patients with ischemic stroke. Neurol Med Chir (Tokyo). 2018; 58 (7): 303–310. DOI: 10.2176/nmc.ra.2018-0022.
28. Crans A. J. R., Wouters E., Valle-Leon M. et al. Striatal Dopamine D2-muscarinic acetylcholine M1 receptor-receptor interaction in a model of movement disorders. Front Pharmacol. 2020; 11: 194. DOI: 10.3389/fphar.2020.00194.
29. Nakahata S., Syahrul C., Nakatake A. Clinical significance of soluble CADH1 as a novel marker for adult T-cell leukemia / Lymphoma. Haematologica. 2021; 106 (2): 532–542. DOI: 10.3324/haematol.2019.234096.
30. Xiong Y., Wu Y., Luo S. et al. Development of a novel immunoassay to detect interactions with the transactivation domain of p53: application to screening of new drugs. Sci Rep. 2017; 7 (1): 9185. DOI: 10.1038/s41598-017-09574-7.
31. Hainaut P., Hollstein M. P53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000; 77: 81–137. DOI: 10.1016/s0065-230x(08)60785-x.
32. Vousden K. H., Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009; 137 (3): 413–431. DOI: 10.1016/j.cell.2009.04.037.
33. Bielefeld –Sevigny M. AlphaLISA immunoassay platform – the “no wash” high-through alternative to Elisa. Assay Drug Dev Technol. 2009;7 (1): 90–92. DOI: 10.1089/adt.2009.9996.
34. Беленичев И. Ф. Фармакокинетический мониторинг лекарственных средств: Учебное пособие для магистров специальности: 224. / И. Ф. Беленичев; под ред. Н. В. Бухтиярова [и др.] // Технологии медицинской диагностики и лечения для студентов специальности 7.12020101 Фармация. – Запорожье, 2018. – 94 с. [Belenichev I. F. Farmakokineticheskii monitoring lekarstvennykh sredstv. Uchebnoe posobie dlya magistrov spetsial'nosti: 224. Tekhnologii meditsinskoi diagnostiki i lecheniya i dlya studentov spetsial'nosti 7.12020101 Farmatsiya. Bukhtiyarova N. V., Pavlov S. V., Ryzhov A. A., Ryzhenko V. P. Zaporozh'e; 2018. (In Russ).].
35. Morra L., Moser R. Alpha technology: a fast and sensitive orthogonal approach to cell-based potency assays. Perkin Elmer. Доступно по: https://www.ibrinc.com/fileadmin/Downloads/REAGENTS_AlphaLISA_Bevacizumab_AppNote.pdf. Ссылка активна на 17. 02. 2021.
36. Yeung D., Ciotti S., Purushothama S. et al. Evaluation of highly sensitive immunoassay technologies for quantitative measurements of sub pg/mL levels of cytokines in human serum. J Immunol Methods. 2016; 437: 53–63.
37. Modi K. N., Parikh P. K., Sen D. J. AlphaLISA biomarker as a tool of drug discovery and development. Drug Dev & Res. 2011; 3 (2): 64–74. Доступно по: https://www.ijddr.in/drug-development/alphalisa-biomarker-as-a-tool-of-drug-discovery-anddevelopment.pdf. Ссылка активна на 17. 02. 2021.
38. Carlstrom J., Wilchek T., Kwei A. Development of pharmacokinetic (PK) asssays for detecting biosimilars targeting TNFa using AlphaLISA. PerkinElmer. Доступно по: https://www.perkinelmer.com/labsolutions/resources/docs/APP_AlphaLISA_Pharmacokinetic_TNFa.pdf. Ссылка активна на 17. 02. 2021.
39. Human CD80 AlphaLISA detection kit. Perkin Elmer, product № AL3055C/F. Доступно по: https://www.perkinelmer.com/product/alphalisa-cd80-human-kit-100pts-al3055hv. Ссылка активна на 17. 02. 2021.
40. Wu Q., Lee H. Y., Wong P. Y. et al. Development and applications of AlphaScreen – based FcRn binding assay to characterize monoclonal antibodies. J Immunol Methods. 2015; 420: 31–37. DOI: 10.1016/j.jim.2015.03.012.
41. Leary B. A., Lawrence-Henderson R., Mallozzi C. et al. Bioanalytical platform comparison using a generic human IgG PK assay format. J Immunol Methods. 2013; 397 (1-2): 28–36. DOI: 10.1016/j.jim.2013.08.009.
42. Human immunoglobulin G subclass 1(IgG1)(pharmacokinetic) kit, Perkin Elmer, product № AL303 C/F. Доступно по: https://www.perkinelmer.com/lab-solutions/resources/docs/TDS_AlphaLISA_AL303.pdf . Ссылка активна на 17. 02. 2021.
43. IFN-γ(human) AlphaLISA Detection kit. Доступно по: https://www.perkinelmer.com/product/alphalisa-ifn-gamma-kit-500-assay-pts-al217c. Ссылка активна на 17. 02. 2021.
Review
For citations:
Mukhametshina R.T., Kopein S.D., Simonov V.M. Application of the AlphaScreen and AlphaLisa method in drug development and pharmacokinetic studies. Pharmacokinetics and Pharmacodynamics. 2022;(1):44-54. (In Russ.) https://doi.org/10.37489/2587-7836-2022-1-44-54