Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

The mimetic of the brain neurotrophic factor GSB-106 has neuroprotective and neuroregenerative effects in experimental ischemic stroke

https://doi.org/10.37489/2587-7836-2022-1-36-43

Abstract

   Background. A dimeric dipeptide mimetic of the brain-derived neurotrophic factor loop 4, bis(N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide (GSB-106), which activates TrkB, PI3K/AKT, MAPK/ERK and PLC-γ1 was created at the V. V. Zakusov Research Institute of Pharmacology. GSB-106 showed neuroprotective activity in vitro and in vivo at systemic administration.

   Objective. In the present study, we studied the effect of GSB-106 on the brain infarct volume, as well as on neurogenesis and synaptogenesis under conditions of experimental ischemic stroke induced by transient occlusion of the middle cerebral artery in rats, when it was first administered 24 h after ischemia onset.

   Methods. Dipeptide GSB-106 was administered i.p. in a dose of 0.1 mg/kg 24 h after surgery and then once a day, with the end of administration on theday 6 after surgery. On the day 7 brain samples were collected for morphometric and biochemical (Western-blot) analysis.

   Results. It was established that GSB-106 reduced the brain damage volume by 24%, restores impaired neurogenesis and/or gliogenesis (by Ki-67) in the hippocampus and in the striatum and completely restored the reduced immunoreactivity to synaptic markers synaptophysin and PSD-95 in the striatum.

   Conclusions. Thus, the dimeric dipeptide BDNF mimetic GSB-106 exhibits neuroregenerative properties at clinically relevant time window (24 h) in a model of ischemic stroke presumably due to stimulation of neurogenesis (and / or gliogenesis) and synaptogenesis.

About the Authors

P. Yu. Povarnina
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Polina Yu. Povarnina, PhD Biological Sci., Senior research scientist

Department of medicinal chemistry

Laboratory of peptide bioregulators

SPIN code: 5498-6724

Moscow



T. A. Antipova
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Tatyana A. Antipova, PhD Biological Sci., Head laboratory

Neuroprotection pharmacology laboratory

SPIN code: 7723-6008

Moscow



I. O. Logvinov
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Ilya O. Logvinov, Research Scientist

Neuroprotection pharmacology laboratory

SPIN code: 9909-9630

Moscow



D. M. Nikiforov
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Dmitriy M. Nikiforov, Junior research scientist

Department of drug chemistry

Laboratory of peptide bioregulators

SPIN code: 7028-8335

Moscow



References

1. Kowiański P, Lietzau G, Czuba E et al. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol. 2018; 38 (3) :579–593. DOI: 10.1007/s10571-017-0510-4.

2. Autry A. E., Monteggia L. M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012; 64 (2): 238–258. DOI: 10.1124/pr.111.005108.

3. Stanne T. M., Aberg N. D., Nilsson S. et al. Low circulating acute brain-derived neurotrophic factor levels are associated with poor long-term functional outcome after ischemic stroke. Stroke. 2016; 47 (7): 1943–1945. DOI: 10.1161/STROKEAHA.115.012383.

4. Zhang Y., Qiu B., Wang J. et al. Effects of BDNF-transfected BMSCs on neural functional recovery and synaptophysin expression in rats with cerebral infarction. Mol Neurobiol. 2017; 54 (5): 3813–3824. DOI: 10.1007/s12035-016-9946-7.

5. Yu S.-J., Tseng K.-Y., Shen H. et al. Local administration of AAV-BDNF to subventricular zone induces functional recovery in stroke rats. PLoS One. 2013; 8 (12): e81750. DOI: 10.1371/journal.pone.0081750.

6. Han Q., Li B., Feng H., et al. The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF. Biomaterials. 2011; 32 (22): 5077–5085. DOI: 10.1016/j.biomaterials.2011.03.072

7. Schäbitz W. R., Steigleder T., Cooper-Kuhn C. M., et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007; 38 (7): 2165–2172. DOI: 10.1161/STROKEAHA.106.477331.

8. Jeong C. H., Kim S. M., Lim J. Y. et al. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. Biomed Res Int. 2014;2014. DOI: 10.1155/2014/129145.

9. Fletcher J. M., Hughes R. A. Modified low molecular weight cyclic peptides as mimetics of BDNF with improved potency, proteolytic stability and transmembrane passage in vitro. Bioorganic Med Chem. 2009; 17 (7): 2695–2702. DOI: 10.1016/j.bmc.2009.02.053.

10. Zhao S., Yu A., Wang X. et al. Post-Injury Treatment of 7,8-Dihydroxyflavone Promotes Neurogenesis in the Hippocampus of the Adult Mouse. J Neurotrauma. 2016; 33 (22): 2055–2064. DOI: 10.1089/neu.2015.4036.

11. Han J., Pollak J., Yang T., et al. Delayed administration of a small molecule TrkB ligand promotes recovery after hypoxic- ischemic stroke. Stroke. 2012; 43 (7): 1918–1924. DOI: 10.1161/STROKEAHA.111.641878.

12. Гудашева Т. А. Дизайн и синтез дипептидных миметиков мозгового нейротрофического фактора / Т. А. Гудашева [и др.] // Биоорганическая Химия. – 2012. –38 (3): 280–290. [Gudasheva T. A., Tarasyuk A. V., Pomogaibo S. V. et al. Gudasheva T. A., Tarasyuk A. V., Pomogaibo S. V. et al. Design and synthesis of dipeptide mimetics of the brain-derived neurotrophic factor. Russ J Bioorg Khim. 2012; 38 (3): 280–290. (In Russ.)]. DOI: 10.1134/S1068162012030053.

13. Gudasheva T. A., Povarnina P., Logvinov I. O. et al. Mimetics of brain-derived neurotrophic factor loops 1 and 4 are active in a model of ischemic stroke in rats. Drug Des Devel Ther. 2016; 10: 3545–3553. DOI: 10.2147/DDDT.S118768.

14. Гудашева Т. А. Дипептидные миметики отдельных петель NGF и BDNF активируют PLC-γ1. / Т. А. Гудашева [и др.] // Доклады РАН. Науки о жизни. – 2020. – 494 (1): 486–490. DOI: 10.31857/S2686738920050133. [Gudasheva T. A., Logvinov I. O., Nikolaev S. et al. Dipeptide mimetics of different NGF and BDNF loops activate PLC-γ1. Dokl Biochem Biophys. 2020; 494 (1): 244–247 (In Russ). DOI: 10.1134/S1607672920050075 ].

15. Гудашева Т. А. Дипептидный миметик 4-й петли мозгового нейротрофического фактора ГСБ-106 активирует TrkB, Erk, Аkt и способствует выживаемости нейронов in vitro / Т. А. Гудашева [и др.] // Доклады Академии наук. – 2013. – 451 (5): 577. DOI: 10.7868/S0869565213240250. [Gudasheva T. A., Logvinov I. O., Antipova T. A., Seredenin S. B. Brain-derived neurotrophic factor loop 4 dipeptide mimetic GSB-106 activates TrkB, Erk, and Akt and promotes neuronal survival in vitro. Dokl Biochem Biophys. 2013; 451: 212–214. (In Russ). DOI: 10.1134/S1607672913040121 ].

16. Gudasheva T. A., Povarnina P., Tarasiuk A. V., Seredenin S. B. The low molecular weight brain-derived neurotrophic factor mimetics with antidepressant-like activity. Curr Pharm Des. 2019; 25 (6): 729–737. DOI: 10.2174/1381612825666190329122852.

17. Колыванов Г. Б. Сравнительная доклиническая фармакокинетика и биодоступность таблетированной лекарственной формы антидепрессанта ГСБ-106 / Г. Б. Колываноыв [и др.] // Бюллетень экспериментальной биологии и медицины. – 2019. – 167 (5): 577-580. [Kolyvanov G. B., Zherdev V. P., Gribakina O. G., et al. Comparative preclinical pharmacokinetics and bioavailability of antidepressant GSB-106 tablet form. Bull Exp Biol Med. 2019; 167 (5): 637–640. (In Russ).]. DOI: 10.1007/s10517-019-04587-w.

18. Алексеева С. В. Исследование острой и хронической токсичности готовой лекарственной формы дипептидного миметика мозгового нейротрофического фактора ГСБ-106 / С. В. Алексеева [и др.] // Фармакокинетика и фармакодинамика. – 2019. – (2): 46-50. [Alekseeva S. V., Sorokina A. V., Volkova A. V., Zabrodina V. V., Miroshkina I. A., Kachalov K. S., Alekseev I. V., Zaharov A. D., Povarnina P. Yu., Durnev A. D. The study of the acute and chronic toxicity dipeptide mimetic of brain-derived neurotrophic factor GSB-106 finished dosage form. Farmakokinetika i farmakodinamika. 2019;(2): 46–50. (In Russ).]. DOI: 10.24411/2587-7836-2019-10047.

19. Гудашева Т. А. Дипептидный миметик мозгового нейротрофического фактора предотвращает нарушение нейрогенеза у стрессированных мышей / Т. А. Гудашева, П. Ю. Поварнина, С. Б. Середенин // Бюллетень экспериментальной биологии и медицины. –2016. – 162. – (10): 448–451. [Gudasheva T. A., Povarnina P. Y., Seredenin S. B. Dipeptide Mimetic of the Brain-derived Neurotrophic Factor Prevents Impairments of Neurogenesis in Stressed Mice. Bull Exp Biol Med. 2017; 162 (4): 454–457. (In Russ).]. DOI: 10.1007/s10517-017-3638-9.

20. Гудашева Т. А. Дипептидный миметик BDNF ГСБ-106 с антидепрессивной активностью стимулирует синаптогенез / Т. А. Гудашева [и др.] // Доклады Академии Наук. – 2018. – 481 (6): 691– 693. DOI: 10.31857/S086956520002110-4. [Gudasheva T. A., Povarnina P. Y., Antipova T. A., Seredenin S. B. Dipeptide mimetic of the BDNF GSB-106 with antidepressant-like activity stimulates synaptogenesis. Dokl Biochem Biophys. 2018; 481 (1): 225-227. (In Russ). DOI: 10.1134/S1607672918040130. ].

21. McCullough L. D., Liu F. Middle cerebral artery occlusion model in rodents: Methods and potential pitfalls. J Biomed Biotechnol. 2011; 2011: 464701. DOI: 10.1155/2011/464701.

22. Longa E. Z., Weinstein P. R., Carlson S., Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20 (1): 84–91. DOI: 10.1161/01.STR.20.1.84.

23. Bederson J. B., Pitts L., Germano S., Nishimura M. et al. Evaluation of 2,3,5-Triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986; 17 (6): 1304–1308. DOI: 10.1161/01.str.17.6.1304.

24. Alam A. A model for formulation of protein assay. Anal Biochem. 1992; 203 (1): 121–126. DOI: 10.1016/0003-2697(92)90051-8.

25. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci. 1979; 76 (9): 4350–4354. DOI: 10.1073/pnas.76.9.4350.

26. Numakawa T., Odaka H., Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci. 2018; 19 (11): 3650. DOI: 10.3390/ijms19113650.

27. Chiaramello S., Dalmasso G., Bezin L. et al. BDNF/TrkB interaction regulates migration of SVZ precursor cells via PI3-K and MAP-K signalling pathways. Eur J Neurosci. 2007; 26 (7): 1780–1790. DOI: 10.1111/j.1460-9568.2007.05818.x.

28. Bath K. G., Akins M. R., Lee F. S. BDNF control of adult SVZ neurogenesis. Dev Psychobiol. 2012;54(6):578–589. DOI: 10.1002/dev.20546.

29. Mizui T. BDNF and Synaptic Plasticity: The Recent Cell Biology for Understanding of Brain Disorders. Clin Pharmacol Biopharm. 2013; S1: 004. DOI: 10.4172/2167-065x.s1-004.

30. Yoshii A., Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol. 2010; 70 (5): 304–322. DOI: 10.1002/dneu.20765.

31. Tartaglia N., Du J., Tyler W. J. et al. Protein Synthesis-dependent and -independent regulation of hippocampal synapses by brain-derived neurotrophic factor. J Biol Chem. 2001; 276 (40): 37585–37593. DOI: 10.1074/jbc.M101683200.


Review

For citations:


Povarnina P.Yu., Antipova T.A., Logvinov I.O., Nikiforov D.M. The mimetic of the brain neurotrophic factor GSB-106 has neuroprotective and neuroregenerative effects in experimental ischemic stroke. Pharmacokinetics and Pharmacodynamics. 2022;(1):36-43. (In Russ.) https://doi.org/10.37489/2587-7836-2022-1-36-43

Views: 554


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)