Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Selank effects on morphine-induced analgesia in vivo experiments

https://doi.org/10.37489/2587-7836-2022-1-30-35

Abstract

   Background. The endogenous opioid system is involved in neuroadaptation produced by exogenous opioids. Synthesized on the basis of the regulatory peptide tuftsin, the anxiolytic selank inhibits the activity of enkephalin-degrading enzymes, increasing the level of leu-enkephalins in blood plasma.
   The aim of the work was to evaluate the effect of selank (0,3 and 0,9 mg/kg, i. p.) on morphine-induced analgesia in animal models. Methods. The experiments were performed in inbred male mice C57Bl/6 (n = 77). The “hot plate” test was used to evaluate the analgesic effect during thermal stimulation of nociceptors when mice were placed on a metal plate heated to 55 ± 0,5 °C, followed by registration of the latent period of the reaction 30, 60, 90, and 120 minutes after the administration of morphine.

   Results. Morphine at a dose of 3,0 mg/kg, i. p., caused antinociception with the maximum possible effect (MBE) of 9 %, selank at a dose of 0,9 mg/kg, without antinociception per se, when pretreated with the morphine, increased the latent reaction time, causing antinociception of 29,9 % MBE.

   Conclusion. For the first time the data obtained on the synergistic effect of selank and morphine in attenuation of acute somatic pain.

About the Authors

A. V. Nadorova
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Anna V. Nadorova, Research scientist

Laboratory of Pharmacological Regulation of Alcohol and Drug Addiction

Moscow



I. V. Chernyakova
FSBI “Zakusov Institute of Pharmacology”
Russian Federation

Irina V. Chernyakova, Cand. Sci. Med., Leading researcher

Laboratory of Pharmacological Regulation of Alcohol and Drug Addiction

Moscow



L. G. Kolik
FSBI “Zakusov Institute of Pharmacology”; RAS
Russian Federation

Larisa G. Kolik, Dr. Sci. (Biol.), Professor, Head Laboratory

Laboratory of Pharmacological Regulation of Alcohol and Drug Addiction

SPIN code: 9126-6922

Moscow



References

1. Brady K. T., McCauley J. L., Back S. E. Prescription Opioid Misuse, Abuse, and Treatment in the United States: An Update. Am J Psychiatry. 2016 Jan; 173 (1): 18–26. DOI: 10.1176/appi.ajp.2015.15020262.

2. Smit T., Rogers A. H., Garey L., Allan N. P., Viana A. G., Zvolensky M. J.. Anxiety sensitivity and pain intensity independently predict opioid misuse and dependence in chronic pain patients. Psychiatry Res. 2020 Dec; 294: 113523. DOI: 10.1016/j.psychres.2020.113523.

3. Fields H. L. The doctor’s dilemma: opiate analgesics and chronic pain. Neuron. 2011. Feb 24; 69 (4): 591–594. DOI: 10.1016/j.neuron.2011.02.001.

4. Corsello S. M., Bittker J. A., Liu Z., Gould J., McCarren P., Hirschman J. E., Johnston S. E., Vrcic A., Wong B., Khan M., et al. The Drug Repurposing Hub: a next generation drug library and information resource. Nat Med. 2017 Apr 7; 23 (4): 405–408. DOI: 10.1038/nm.4306.

5. Jann M., Kennedy W. K., Lopez G. Benzodiazepines: a major component in unintentional prescription drug overdoses with opioid analgesics. J Pharm Pract. 2014; 27 (1): 5–16. DOI: 10.1177/0897190013515001.

6. Rosland J. H., Hunskaar S., Hole K. Diazepam attenuates morphine antinociception test-dependently in mice. Pharmacol Toxicol. 1990 May; 66 (5): 382–386. DOI: 10.1111/j.1600-0773.1990.tb00766.x.

7. Luger T. J., Hayashi T., Lorenz I. H., Hill H. F. Mechanisms of the influence of midazolam on morphine antinociception at spinal and supraspinal levels in rats. Eur J Pharmacol. 1994 Dec 27; 271 (2-3): 421–431. DOI: 10.1016/0014-2999(94)90802-8.

8. Korneyev A. Y. and Seredenin S. B. Effect of 5-HT-1A receptor agonists on paw licking reaction on hot plate and unpunished drinking in rat. Life Sci. 1993; 52 (12): 997–1004. DOI: 10.1016/0024-3205(93)90191-5.

9. Wilkerson J. L., Felix J. S., Restrepo L. F., Ansari M. I., Coop A., McMahon L. R. The Effects of Morphine, Baclofen, and Buspirone Alone and in Combination on Schedule-Controlled Responding and Hot Plate Antinociception in Rats. J Pharmacol Exp Ther. 2019 Sep; 370 (3): 380–389. DOI: 10.1124/jpet.118.255844.

10. Varela M. J., Acanda de la Rocha A. M., Díaz A., Lopez-Gimenez J. F. Potentiation of morphine-induced antinociception and locomotion by citalopram is accompanied by anxiolytic-like effects. Pharmacol Biochem Behav. 2017 Dec; 163: 83–89. DOI: 10.1016/j.pbb.2017.10.003.

11. Ide S., Satoyoshi H., Minami M., Satoh M. Amelioration of the reduced antinociceptive effect of morphine in the unpredictable chronic mild stress model mice by noradrenalin but not serotonin reuptake inhibitors. Mol Pain. 2015 Aug 11; 11: 47. DOI: 10.1186/s12990-015-0051-0.

12. Pakulska W., Czarnecka E. Effect of diazepam and midazolam on the antinociceptive effect of morphine, metamizol and indomethacin in mice. Pharmazie. 2001 Jan; 56 (1): 89–91.

13. Колик Л. Г. Влияние афобазола на антиноцицептивные свойства морфина / Л. Г. Колик, В. Н. Жуков, С. Б. Середенин // Экспериментальная и клиническая фармакология. – 2009. – 72 (1): 22–23. [Kolik L. G., Zhukov V. N., Seredenin S. B. Afobazole effects on antinociceptive properties of morphine. E`ksperimental`naya i klinicheskaya farmakologiya. 2009; 72 (1): 22–23. (In Russ).]. URL: http://ekf.folium.ru/index.php/ekf/article/view/666

14. Константинопольский М. А. Экспериментальная оценка влияния ладастена и ГБ-115 на развитие толерантности к анальгетическому действию морфина / М. А. Константинопольский, И. В. Чернякова, Л. Г. Колик // Фармакокинетика и Фармакодинамика. – 2016. – (2): 40–45. [Konstantinopolsky M. A., Chernyakova I. V., Kolik L. G. Experimental assessment of ladasten and GB-115 effects on the antinociceptive tolerance to morphine. Pharmacokinetics and Pharmacodynamics. 2016; (2): 40–45. (In Russ).].

15. Зозуля А. А. Эффективность и возможные механизмы действия нового пептидного анксиолитика селанка при терапии генерализованного тревожного расстройства и неврастении / А. А. Зозуля [и др.] // Журнал неврологии и психиатрии им. C. C. Корсакова. – 2008. –108 (4): 38–48. [Zozulya A. A., Neznamov G. G., Syunyakov T. S., Kast N. V., Gabaeva M. V., Sokolov O. Yu., Serebryakova E. V., Siranchieva O. A., Andryushchenko A. V., Telesheva E. S., Syunyakov S. A., Smulevich А. В., Myasoedov N. F., Seredenin S. B. Efficacy and possible mechanisms of action of a new peptide anxiolytic selank in the therapy of generalized anxiety disorders and neurasthenia. Zhurnal nevrologii i psixiatrii im C. C. Korsakova. 2008; 108 (4): 38–48. (In Russ).].

16. Наркевич В. Б. Влияние гептапептида cеланка на содержание моноаминов и их метаболитов в структурах мозга мышей линий BALB/C и C57Bl/6: сравнительное изучение / В. Б. Наркевич [и др.] // Экспериментальная и клиническая фармакология. – 2008. – 71 (5): 8–12. [Narkevich V. B., Kudrin V. S., Klodt P. M., Pokrovskii A. A., Kozlovskaya M. M., Maiskii A. I., Raevskii K. S. Effects of heptapeptide selank on the content of monoamines and their metabolites in the brain of BALB/C and C57BL/6 mice: a comparative study. E`ksperimental`naya i klinicheskaya farmakologiya. 2008; 71 (5): 8–12. (In Russ).]. URL: http://ekf.folium.ru/index.php/ekf/article/view/817

17. Надорова А. В. Соотношение анксиолитического действия селанка и уровня серотонина в отдельных структурах мозга при моделировании алкогольной абстиненции у крыс / А. В. Надорова [и др.] // Нейрохимия. – 2014. – 31 (2): 147–153. [Nadorova A. V., Kolik L. G., Klodt P. M., Narkevich V. B., Naplyokova P. L., Kozlovskaya M. M., Kudrin V. S. The relationship between the anxiolytic action of selank and the level of serotonin in brain structures during the modeling of alcohol abstinence in rats. Neurochemical journal. 2014; 8 (2): 115–120. (In Russ).]. DOI: 10.1134/S1819712414020081.

18. Вьюнова Т. В. Пептидная регуляция специфичного лигандрецепторного взаимодействия ГАМК с плазматическими мембранами нервных клеток / Т. В, Вьюнова [и др.] // Нейрохимия. – 2014. – 31 (4): 300–306. DOI: 10.7868/S1027813314040116. [V'yunova T. V., Andreeva L. A., Shevchenko K. V., Shevchenko V. P., Myasoedov N. F.. Peptide regulation of specific ligand-receptor interactions of GABA with the plasma membranes of nerve cells. Neurochemical Journal. 2014; 8 (4): 259–264. (In Russ).]. DOI: 10.1134/S1819712414040114.

19. Volkova A., Shadrina M., Kolomin T., Andreeva L., Limborska S., Myasoedov N., Slominsky P. Selank Administration Affects the Expression of Some Genes Involved in GABAergic Neurotransmission. Front Pharmacol. 2016 Feb 18; 7: 31. DOI: 10.3389/fphar.2016.00031.

20. Козловский И. И. О роли опиоидной системы в формировании особенностей анксиолитического действия пептидного препарата селанка / И. И. Козловский [и др.] // Экспериментальная и клиническая фармакология. – 2012/ – 75 (2): 10–13. [Kozlovskii I. I., Andreeva L. A., Kozlovskaya M. M., Nadorova A. V., Kolik L. G. The role of opioid system in peculiarities of anti-anxiety effect of peptide anxiolytic selank. E`ksperimental`naya i klinicheskaya farmakologiya. 2012; 75 (2): 10–13. (In Russ).].

21. Herman Z. S., Stachura Z., Opiełka L., Siemion I. Z., Nawrocka E. Tuftsin and D-Arg3-tuftsin possess analgesic action. Experientia. 1981 Jan 15; 37 (1): 76–77. DOI: 10.1007/BF01965580.

22. Nawrocka-Bolewska E., Kubik A., Szewczuk Z., Siemion I. Z., Obuchowicz E., Gołba K., Herman Z. S. Further investigations on the antinociceptive activity of tuftsin analogs. Pol J Pharmacol Pharm. 1991 Jul-Aug; 43 (4): 281–288.

23. Herman Z. S., Laskawiec G., Gołba K., Kubik A., Siemion I. Z. L-prolyl-L-arginine fragment of tuftsin peptide chain elicits analgesic action. Naturwissenschaften.1985 Feb; 72 (2): 85–86. DOI: 10.1007/BF00508137.

24. Jokinen V., Lilius T. O., Laitila J., Niemi M., Rauhala P. V., Kalso E. A. Pregabalin enhances the antinociceptive effect of oxycodone and morphine in thermal models of nociception in the rat without any pharmacokinetic interactions. Eur J Pain. 2016 Feb; 20 (2): 297–306. DOI: 10.1002/ejp.728.

25. Karakucuk E. H., Yamanoglu T., Demirel O., Bora N., Zengil H. Temporal variation in drug interaction between lithium and morphine-induced analgesia. Chronobiol Int. 2006; 23 (3): 675–682. DOI: 10.1080/07420520600650745.

26. Kotlinska-Lemieszek A., Klepstad P., Haugen D. F. Clinically significant drug-drug interactions involving opioid analgesics used for pain treatment in patients with cancer: a systematic review. Drug Des Devel Ther. 2015 Sep 16; 9: 5255–5267. DOI: 10.2147/DDDT.S86983.

27. Lee N. M., Leybin L., Chang J. K., Loh H. H. Opiate and peptide interaction: effect of enkephalins on morphine analgesia. Eur J Pharmacol. 1980 Nov 21; 68 (2): 181–185. DOI: 10.1016/0014-2999(80)90319-2.

28. Золотарев Ю. А. Равномерно меченные тритием пептиды в исследованиях по их биодеградации in vivo и in vitro / Ю. А. Золотарев [и др.] // Биоорганическая химия. – 2006. – 32 (2): 183–191. [Zolotarev Yu. A., Dadayan A. K., Dolotov O. V., Kozik V. S., Kost N. V., Sokolov O. Yu., Doroknova E. M., Meshavkin V. K., Inozemtseva L. S., Gabaeva M. V., Andreeva L. A., Alfeeva L. Yu., Pavlov T. S., Badmaeva K. E., Badmaeya S. E., Bakaeva Z. V., Kopylova G. N., Samonina G. E., Vaskovsky B. V., Grivennikov I. A., Zozulya A. A., Myasoedov N. F. Evenly tritiumlabeled peptides in study of peptide in vivo and in vitro biodegradation. Bioorganicheskaya chimiya. 2006; 32 (2): 183–191. (In Russ).].


Review

For citations:


Nadorova A.V., Chernyakova I.V., Kolik L.G. Selank effects on morphine-induced analgesia in vivo experiments. Pharmacokinetics and Pharmacodynamics. 2022;(1):30-35. (In Russ.) https://doi.org/10.37489/2587-7836-2022-1-30-35

Views: 884


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)