The influence of Piracetam and Phenotropil on brain dopamine and serotonin metabolism in CD-1 mice sub-populations, diverging in attention sustainability
https://doi.org/10.37489/2587-7836-2021-4-40-46
Abstract
The effect of subchronic administration of the nootropics Phenotropil (100 mg/kg/day) on the behavior of CD-1 outbreed mice in the "closed enriched cross maze" test (CECM) was studied. Predominantly, the mouse population was divided into subpopulations according to their values of individual attention index for novel objects in the maze compartments – highly attentive (ED-high) and low attentive (ED-low). It was found that Phenotropil increased the attention index in ED-low, but disimproved it in the ED-high subpopulation, and also changed parameteres of anxiety and locomotor activity; this distinguished it from the more selective effect of Piracetam (200 mg/kg/day). The higher selectivity of Piracetam was also shown in relation to dopamine metabolism processes in the prefrontal cortex: the drug normalized the metabolic turnover of intracellular (DOPAC/DA) as well as extracellular (HVA/DA) dopamine, while Phenotropil influenced on the former only. Thus, positive effect of Piracetam on the attention level in ED-low mice corresponds to the normalization of both indicators of dopamine metabolism in the prefrontal cortex, while Phenotropil showed non-selectivity onto both behavioral and neurochemical parameters. Piracetam and Phenotropil failed to affect the cortical and striatal serotonin metabolism in both subpopulations.
Keywords
About the Authors
N. A. SukhorukovaRussian Federation
Sukhorukova Nataliya A. - Junior researcher, Laboratory of radioisotope research metho
SPIN code: 2656-4174
Moscow
V. S. Kudrin
Russian Federation
Kudrin Vladimir S. - PhD Med. Sci., Head of the Laboratory of Neurochemical Pharmacology
SPIN code: 3986-3262
Moscow
V. B. Narkevich
Russian Federation
Narkevich Victor B. - PhD Med. Sci., Senior Research Scientist, Laboratory of Neurochemical Pharmacology
Moscow
G. I. Kovalev
Russian Federation
Kovalev Georgy I. - Dr. Sci. (Med.), professor, Head of the Laboratory of radioisotope research methods
SPIN code: 8461-8814
Moscow
References
1. Pennington BF, Ozonoff S. Executive functions and developmental psychopathology. J Child Psychol Psychiatry. 1996;37(1):51–87. DOI: 10.1111/j.1469-7610.1996.tb01380.x.
2. Rogeness GA, Javors MA, Pliszka SR. Neurochemistry and child and adolescent psychiatry. J Am Acad Child Adolesc Psychiatry. 1992;31(5):765– 781. DOI: 10.1097/00004583-199209000-00001.
3. Nyokiktien Ch. Detskaya povedencheskaya nevrologiya. Moscow; Terevinf: 2020. (In Russ).
4. Zavadenko NN. Giperaktivnost' i deficit vnimaniya v detskom vozraste. Uchebnoe posobie dlya vuzov. Moscow; Terevinf: Izdatel'stvo YUrajt; 2019. (In Russ).
5. Salimov RM, Kovalev GI. Effect of atomoxetine on behavior of outbred mice in the enrichment discrimination test. Journal of behavioral and brain science. 2013;3(02):210–216. DOI: 10.4236/jbbs.2013.32022.
6. Kovalev GI, Firstova YuYu, Salimov RM. Effects of piracetam and meclofenoxate on the brain NMDA and nicotinic receptors in mice with different exploratory efficacy in the cross maze test. Eksperimental'naia i Klinicheskaia Farmakologiia. 2008;71(1):12–17. (In Russ). DOI:10.30906/0869-2092-2008-71-1-12-17.
7. Kovalev GI, Akhapkina VI, Abaimov DA, Firstova YuYu. Fenotropil kak receptornyj modulyator sinapticheskoj nejroperedachi. Atmostfera. Nervnye bolezni. 2007;(4):22–26. (In Russ).
8. Vasil’eva EV, Salimov RM, Kovalev GI. Effects of nootropic drugs on behavior of BALB/C and C57BL/6 mice in the exploratory crossmaze test. Eksperimental'naia i Klinicheskaia Farmakologiia. 2012;75(7): 3–7. (In Russ). DOI: 10.30906/0869-2092-2012-75-7-3-7.
9. Glowinski J, Iversen LL. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H] dopa in various regions of the brain. J Neurochem. 1966;13(8):655–669. DOI:10.1111/j.1471-4159.1966.tb09873.x
10. Kudrin VS, Miroshnichenko II, Raevsky KS. Razlichiya v mekhanizmah autoreceptornoj regulyacii biosinteza i vysvobozhdeniya dofamina v podkorkovyh strukturah mozga krys. Nejrohimiya. 1988;7(1): 3–10. (In Russ).
11. Kovalev GI, Sukhorukova NA, Kondrakhin EA, Vasil'eva EV, Salimov RM. Influence of piracetam on the brain receptors in CD-1 mice with different attention stability phenotypes. Pharmaceutical Chemistry Journal. 2021;55(8):10–14 (In Russ). DOI: 10.30906/0023-1134-2021-55-8-10-14.
12. Faraone SV, Perlis RH, Doyle A et al. Molecular genetics of attentiondeficit/ hyperactivity disorder. Biol Psychiatry. 2005;57(11):1313–1323. DOI: 10.1016/j.biopsych.2004.11.024.
13. Biederman J, Faraone, SV. Current concepts on the neurobiology of Attention-Deficit/Hyperactivity Disorder. J Atten Disord. 2002;6 Suppl 1:S7–16. DOI: 10.1177/070674370200601S03.
14. Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry. 2013;70(2):185–198. DOI: 10.1001/jamapsychiatry.2013.277.
15. Greenhill LL. Clinical effects of stimulant medication in ADHD. In: Solanto, MV, Arnsten, A.F.T., Castellanos, F.X. (Eds.), Stimulant Drugs and ADHD: Basic and Clinical Neuroscience. Oxford University Press, New York, 2001. pp. 31–71.
16. Berridge CW, Devilbiss DM. Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011:69(12):e101–111. DOI: 10.1016/j.biopsych.2010.06.023.
17. Kovalev GI, Salimov RM, Sukhorukova NA, Kondrakhin EA, Vasil'eva EV. Neuroreceptor profile and behavior of CD-1 mice subpopulations with different attention stability. Neurochemical Journal. 2020;37(1):15–23. (In Russ). DOI: 10.1134/S1819712420010146.
18. Kovalev GI, Sukhorukova NA, Vasil’eva EV, Kondrakhin EA, Salimov RM. Analysis of behavioral and neuroceptor effects of atomoxetine and phenibut in CD-1 mice subpopulations diverging in sustained attention. Eksperimental'naia i Klinicheskaia Farmakologiia. 2021;84(4):3–11. (In Russ). DOI: 10.30906/0869-2092-2021-84-4-3-11.
19. Kovalev GI, Sukhorukova NA, Vasil’eva EV, Kondrakhin EA, Salimov RM. Influence of pantogam and atomoxetine on attention stability and distribution of dopamine D2 and GABAB receptors in the attention deficit mouse model. Biomeditsinskaya khimiya. 2021;67(5):402–410. (In Russ). DOI: 10.18097/PBMC20216705402.
20. Kovalev GI, Sukhorukova NA, Kondrakhin EA, Vasil’eva EV, Salimov RM. Subchronic administration of semax increases attention stability in CD-1 mice via modulation D2-dopamine receptors in the prefrontal cortex. Eksperimental'naia i Klinicheskaia Farmakologiia. 2021;84(6):3–10. (In Russ). DOI: 10.30906/0869-2092-2021-84-6-3-10.
21. Brennan RA, Arnsten AFT. Neuronal mechanisms underlying attention deficite hyperactive disorder: the influence of arousal on prefrontal cortical function. Ann N Y Acad Sci. 2008;1129:236–245. DOI: 10.1196/annals.1417.007.
22. Lee Y-A, Goto Y. Prefrontal cortical dopamine from an evolutionary perspective. Neurosci Bull. 2015;31(2):164–174. DOI: 10.1007/s12264-014-1499-z.
23. Vizi ES, Lendvai B. Modulatory role of presynaptic nicotinic receptors in synaptic and non-synaptic chemical communication in the central nervous system. Brain Res Brain Res Rev. 1999;30(3):219–235. DOI: 10.1016/s0165-0173(99)00016-8.
24. Ohmura Y, Tsutsui-Kimura I, Yoshioka M. Impulsive behavior and nicotinic acetylcholine receptors. J Pharmacol Sci. 2012;118(4):413–422. DOI: 10.1254/jphs.11r06cr.
25. Hall FS, Der-Avakian A, Gould TJ. et al. Negative affective states and cognitive impairments in nicotine dependence. Neurosci Biobehav Rev. 2015;58:168–185. DOI: 10.1016/j.neubiorev.2015.06.004.
26. Puttfarcken PS, Jacobs I, Faltynek CR. Characterization of nicotinic acetylcholine receptor-mediated [3H]-dopamine release from rat cortex and striatum. Neuropharmacology. 2000;39(13):2673–2680. DOI: 10.1016/S0028-3908(00)00131-3.
27. Kovalev GI, Firstova YuYu. Nootropnye preparaty: raznye misheni – obshchij effekt. Klinicheskaya farmakologiya i terapiya. 2010;19(6):72–73. (In Russ).
Review
For citations:
Sukhorukova N.A., Kudrin V.S., Narkevich V.B., Kovalev G.I. The influence of Piracetam and Phenotropil on brain dopamine and serotonin metabolism in CD-1 mice sub-populations, diverging in attention sustainability. Pharmacokinetics and Pharmacodynamics. 2021;(4):40-46. (In Russ.) https://doi.org/10.37489/2587-7836-2021-4-40-46