The in vitro neuroprotective activity of analogues of N-terminus substituted glyprolines
https://doi.org/10.37489/2587-7836-2020-2-4-10
Abstract
Keywords
About the Authors
S. V. NikolaevRussian Federation
Nikolaev Sergey V. – Research Scientist, Neuroprotection pharmacology laboratory. SPIN code: 7723-6008
Moscow
I. O. Logvinov
Russian Federation
Logvinov Ilya O. – Research Scientist, Neuroprotection pharmacology laboratory. SPIN code: 9909-9630
Moscow
K. N. Koliasnikova
Russian Federation
Koliasnikova Ksenia N. – Research Scientist, Laboratory of peptide bioregulators, Department of medicinal chemistry. SPIN code: 5682-2035
Moscow
E. A. Kuznetsova
Russian Federation
Kuznetsova Elena A. –PhD, Senior Research Scientist, Laboratory of fine organic synthesis, Department of medicinal chemistry
Moscow
P. I. Antipov
Russian Federation
Antipov Petr I. – PhD, Senior Research Scientist, Laboratory of peptide bioregulators, Department of medicinal chemistry. SPIN code: 2591-3379
Moscow
T. A. Antipova
Russian Federation
Antipova Tatyana A. – PhD, Head Neuroprotection pharmacology laboratory. SPIN-код: 7723-6008
Moscow
References
1. Gudasheva TA, Boyko SS, Akparov VKh et al. Identification of a novel endogenous memory facilitating cyclic dipeptide cyclo-prolylglycine in rat brain. FEBS Letters. 1996;391:149–152. DOI: 10.1016/0014-5793(96)00722-3
2. Gudasheva TA, Ostrovskaya RU, Trofimov SS et al. New endogenous dipeptide cycloprolyl-glycine is similar to Piracetam by its mnemotropic selectivity. Bulletin Of Experimental Biology And Medicine. 1999;128(4):10121014. (In Russ).
3. Gudasheva TA, Konstantinopol'skii MA, Ostrovskaya RU, Seredenin SB. Anxiolytic activity of endogenous nootropic dipeptide cycloprolylglycine in elevated plus-maze test. Bulletin of Experimental Biology and Medicine. 2001;131(5);464–466. (In Russ). DOI: 10.1023/A:1017928116025
4. Kolyasnikova KN, Gudasheva TA, Nazarova GA et al. Similarity of Cycloprolylglycine to Piracetam in Antihypoxic and Neuroprotective Effects. Russian Journal of Experimental and Clinical Pharmacology. 2012;75(9);3–6. (In Russ).
5. Povarnina PY, Kolyasnikova KN, Gudasheva TA et al. Neuropeptide cycloprolylglycine exhibits neuroprotective activity after systemic administration to rats with modeled incomplete global ischemia and in in vitro modeled glutamate neurotoxicity. Bulletin of Experimental Biology and Medicine. 2016;160(5):653–655. (In Russ). DOI: 10.1007/s10517-016-3241-5
6. Gudasheva TA, Koliasnikova KN, Seredenin SB, et al. Neuropeptide cycloprolylglycine is an endogenous positive modulator of AMPA receptors. Doklady akademii nauk. 2016;471(1):106–108. (In Russ). DOI: 10.7868/s0869565216310273
7. Gudasheva TA, Koliasnikova KN, et al. Neuropeptide cycloprolylglycine is an endogenous positive modulator of AMPA receptors. Doklady Biochemistry and Biophysics. 2016;471(1):387–389. (In Russ). DOI: 10.1134/s160767291606003x
8. Antipova TA, Kolyasnikova KN, Volkova YS, et al. Neuroprotective properties of novel substituted glyprolines in vitro. Farmakokinetika i farmakodinamika. 2018;(3):31–36. (In Russ). DOI: 10.24411/2587-7836-2018-10021
9. Gudasheva TA, Kolyasnikova KN, Kuznetsova EA, et al. N-Phenylacetylglycyl-L-Proline Ethyl Ester converts into Cyclo-LProlylglycine showing a similar spectrum of neuropsychotropic activity. Pharmaceutical Chemistry Journal. 2017; 50(11);705–710. (In Russ). DOI: 10.1007/s11094-017-1516-4
10. Gardner RR, Gellman SH. Secondary Effects in Flexible Hydrogen Bonding Networks. Pergamon. 1997;29:9881-9990. DOI: 10.1021/ja00146a038
11. Jackson GR, Werrbach-Perez K, Ezell EL, et al. Nerve growth factor effects on pyridine nucleotides after oxidant injury of rat pheochromocytoma cells. Brain Research. 1992;592(1-2):239–248. DOI: 10.1016/0006-8993(92)91681-4
12. Riveles K, Luping ZH, Quik M. Cigarete smoke, nicotine and cotinine protect against 6-hydroxydopamine-induced toxicity in SH-SY5Y cells, Neurotoxicology. 2008;29(3):421– 427. DOI: 10.1016/j.neuro.2008.02.001
13. Twentyman PR, Luscombe M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. British journal of cancer. 1987;56:279–285. DOI: 10.1038/bjc.1987.190
14. Anderson GW, Zimmerman JE, Callahan FM. Reinvestigation of the mixed carbonic anhydride method of peptide synthesis. J. Am. Chem. Soc. 1967;89:5012–5017. DOI: 10.1021/ja00995a032
15. Baumann E. Ueber eine einfache Methode der Darstellung von Benzoësäureäthern. Ber. Dtsch. Chem. Ges., 1886;19:3218–3222. DOI: 10.1002/CBER.188601902348
16. Brenner M, Huber W. Herstellung von α-Aminosäureestern durch Alkoholyse der Methylester. Helv. Chim. Acta. 1953;36:1109-1115. DOI: 10.1002/hlca.19530360522
17. Wyrsch P, Blenn C, Bader J, et al. Cell death and autophagy under oxidative stress: roles of poly(ADP-ribose) polymerases and Ca2+ . Molecular and Cell Biology. 2012;17:3541–3553. DOI: 10.1128/MCB.00437-12
Review
For citations:
Nikolaev S.V., Logvinov I.O., Koliasnikova K.N., Kuznetsova E.A., Antipov P.I., Antipova T.A. The in vitro neuroprotective activity of analogues of N-terminus substituted glyprolines. Pharmacokinetics and Pharmacodynamics. 2020;(2):4-10. (In Russ.) https://doi.org/10.37489/2587-7836-2020-2-4-10