Preview

Фармакокинетика и Фармакодинамика

Расширенный поиск

Лиганды сигнальных белков Ерас как инструменты для изучения их биологической активности и создания новых оригинальных лекарственных средств

https://doi.org/10.37489/2587-7836-2019-4-3-17

Полный текст:

Аннотация

В обзоре рассмотрены современные представления о строении и функциях белков Ерас (exchange proteins directly activated by cAMP, обменные белки, напрямую активируемые циклическим аденозинмонофосфатом). Вовлечённость белков Ерас как в регуляцию физиологических функций организма, так и в инициации различных патологических процессов позволяет рассматривать их как принципиально новую биомишень для создания оригинальных, высокоэффективных лекарственных средств. Собраны сведения о существующих агонистах и антагонистах белков Ерас, проанализировано влияние строения лигандов Ерас на значения их аффинности и селективности. Представлены предполагаемые механизмы взаимодействия лигандов с белками Ерас.

Об авторах

Г. В. Мокров
ФГБНУ «НИИ фармакологии имени В.В. Закусова»
Россия
Мокров Григорий Владимирович, SPIN-код: 8755-7666, к. х. н., в. н. с. лаборатории тонкого органического синтеза отдела химии лекарственных средств, Москва


Т. Д. Никифорова
ФГБНУ «НИИ фармакологии имени В.В. Закусова»
Россия

Никифорова Татьяна Дмитриевна, SPIN-код: 8593-9450, лаборант-исследователь лабаротории фармакологического скрининга, Москва



С. А. Крыжановский
ФГБНУ «НИИ фармакологии имени В.В. Закусова»
Россия

Крыжановский Сергей Александрович, SPIN-код: 6596-4865, д. м. н., заведующий лабораторией фармакологического скрининга, Москва



Список литературы

1. Kawasaki H, Springett GM, Mochizuki N, et al. A family of cAMPbinding proteins that directly activate Rap1. Science. 1998 Dec;18;282(5397):2275–9. DOI: 10.1126/science.282.5397.2275

2. de Rooij J, Zwartkruis FJ, Verheijen MH, et al. Epac is a Rap1 guaninenucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998 Dec 3;396(6710):474–7. DOI: 10.1038/24884

3. Cheng X, Ji Z, Tsalkova T, Mei F, Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai). 2008 Jul;40(7):651–62. DOI: 10.1111/j.1745-7270.2008.00438.x

4. Banerjee U, Cheng X. Exchange protein directly activated by cAMP encoded by the mammalian rapgef3 gene: Structure, function and therapeutics. Gene. 2015 Oct 10;570(2):157–67. DOI: 10.1016/j.gene.2015.06.063

5. Dao KK, Teigen K, Kopperud R, et al. Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition. J Biol Chem. 2006 Jul 28;281(30):21500–11. DOI: 10.1074/jbc.M603116200

6. de Rooij J, Rehmann H, van Triest M., et al. Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem. 2000 Jul 7;275(27):20829–36. DOI: 10.1074/jbc.M001113200

7. Laurent AC, Breckler M, Berthouze M, Lezoualc'h F. Role of Epac in brain and heart. Biochem Soc Trans. 2012 Feb;40(1):51–7. DOI: 10.1042/BST20110642

8. Borland G., Gupta M., Magiera M.M., et al. Microtubule-associated protein 1B-light chain 1 enhances activation of Rap1 by exchange protein activated by cyclic AMP but not intracellular targeting. Mol Pharmacol. 2006 Jan;69(1):374–84. DOI: 10.1124/mol.105.016337

9. Gloerich M., Ponsioen B., Vliem M.J., et al. Spatial regulation of cyclic AMP-Epac1 signaling in cell adhesion by ERM proteins. Mol Cell Biol. 2010 Nov;30(22):5421–31. DOI: 10.1128/MCB.00463-10

10. Kiermayer S, Biondi RM, Imig J, et al. Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. Mol Biol Cell. 2005 Dec;16(12):5639–48. DOI: 10.1091/mbc.e05-05-0432

11. Rehmann H, Rueppel A, Bos JL, Wittinghofer A. Communication between the regulatory and the catalytic region of the cAMP-responsive guanine nucleotide exchange factor Epac. J Biol Chem. 2003 Jun 27;278(26):23508–14. DOI: 10.1074/jbc.M301680200

12. Robichaux WG, Cheng Х. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev. 2018 Apr 1;98(2):919–1053. DOI: 10.1152/physrev.00025.2017

13. Sehrawat S, Ernandez T, Cullere X, et al. AKAP9 regulation of microtubule dynamics promotes Epac1-induced endothelial barrier properties. Blood. 2011 Jan 13;117(2):708–18. DOI: 10.1182/blood-2010-02-268870

14. Hong J, Doebele RC, Lingen MW, et al. Anthrax edema toxin inhibits endothelial cell chemotaxis via Epac and Rap1. J Biol Chem. 2007 Jul 6; 282(27):19781–7. DOI: 10.1074/jbc.M700128200

15. Amano H, Ando K, Minamida S, et al. Adenylate cyclase/protein kinase A signaling pathway enhances angiogenesis through induction of vascular endothelial growth factor in vivo. Jpn J Pharmacol. 2001 Nov;87(3):181–188. DOI: 10.1254/jjp.87.181

16. Kawano Y, Yoshimura T, Kaibuchi K, Smooth muscle contraction by small GTPase Rho. Nagoya J Med Sci. 2002 May;65(1-2):1–8. PMID: 12083286

17. Wang H, Robichaux WG, Wang Z, et al. Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury. Sci Rep. 2016 Nov 10;6:36552. DOI: 10.1038/srep36552

18. Pereira L, Rehmann H, Lao DH, et al. Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes. Proc Natl Acad Sci USA. 2015 Mar 31;112(13):3991–3996. DOI: 10.1073/pnas.1416163112

19. Mangmool S, Hemplueksa P, Parichatikanond W, Chattipakorn N. Epac is required for GLP-1R-mediated inhibition of oxidative stress and apoptosis in cardiomyocytes. Mol Endocrinol. 2015 Apr;29(4):583–596. DOI: 10.1210/me.2014-1346

20. Fazal L, Laudette M, Paula-Gomes S, et al. Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death. Circ Res. 2017 Feb 17;120(4):645–657. DOI: 10.1161/CIRCRESAHA.116.309859

21. Laudette M, Coluccia A, Sainte-Marie Y, et al. Identification pharmacological inhibitor Epac1 that protectsheart against acute and chronic modelscardiac stress. Cardiovasc Res. 2019 Mar 14. pii: cvz076. DOI: 10.1093/cvr/cvz076

22. Insel PA, Murray F, Yokoyama U, et al. cAMP and Epac in the regulation of tissue fibrosis. Br J Pharmacol. 2012 May;166(2):447–456. DOI: 10.1111/j.1476-5381.2012.01847.x

23. Pereira L, Cheng H, Lao DH, et al. Epac2 mediates cardiac β1-adrenergicdependent sarcoplasmic reticulum Ca2+ leak and arrhythmia. Circulation. 2013 Feb 26;127(8):913–22. DOI: 10.1161/CIRCULATIONAHA.12.148619

24. Enserink JM, Christensen AE, de Rooij J, et al. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol. 2002;4:901–906. DOI: 10.1038/ncb874

25. Christensen AE, Selheim F, de Rooij J, et al. cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem. 2003;278:35394–35402. DOI: 10.1074/jbc.M302179200

26. Dao KK, Teigen K, Kopperud R, et al. Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition. J Biol Chem. 2006;281:21500–21511. DOI: 10.1074/jbc.M603116200

27. Schwede F, Bertinetti D, Langerijs CN, et al. Structure-guided design of selective Epac1 and Epac2 agonists. PLoS Biol. 2015;13:e1002038.

28. Wang P, Liu Z, Chen H, et al. Exchange proteins directly activated by cAMP (EPACs): Emerging therapeutic targets. Bioorg Med Chem Lett. 2017 Apr 15;27(8):1633–1639. DOI: 10.1016/j.bmcl.2017.02.065

29. Vliem MJ, Ponsioen B, Schwede F, et al. 8-pCPT-2'-O-Me-cAMPAM: an improved Epac-selective cAMP analogue. ChemBioChem. 2008;9:2052–2054. DOI: 10.1002/cbic.200800216

30. Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev. 2013;65:670–709. DOI: 10.1124/pr.110.003707

31. Poppe H, Rybalkin SD, Rehmann H, et al. Cyclic nucleotide analogs as probes of signaling pathways. Nat Methods. 2008;5:277–278. DOI: 10.1038/nmeth0408-277

32. Takahashi T, Shibasaki T, Takahashi H, et al. Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A. Sci Signal. 2013 Oct 22;6(298):ra94. DOI: 10.1126/scisignal.2004581

33. Zhang CL, Katoh M, Shibasaki T, et al. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science. 2009 Jul 31;325(5940):607–610. DOI: 10.1126/science.1172256

34. Enyeart JA, Liu H, Enyeart J. cAMP analogs and their metabolites enhance TREK-1 mRNA and K+ current expression in adrenocortical cells. J. Mol Pharmacol. 2010;77:469–482. DOI: 10.1124/mol.109.061861

35. Herfindal L, Nygaard G, Kopperud R, et al. Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets. Biochem Biophys Res Commun. 2013;437:603–608. DOI: 10.1016/j.bbrc.2013.07.007

36. Tsalkova T, Mei FC, Cheng X. A fluorescence-based high-throughput assay for the discovery of exchange protein directly activated by cyclic AMP (EPAC) antagonists. PLoS One. 2012;7:e30441. [PubMed: 22276201]. DOI: 10.1371/journal.pone.0030441

37. Tsalkova T, Mei FC, Li S, et al. Isoform-specific antagonists of exchange proteins directly activated by cAMP. Proc Natl Acad Sci USA. 2012;109:18613–18618. DOI: 10.1073/pnas.1210209109

38. Kraemer A, Rehmann HR, Cool RH, et al. Dynamic interaction of cAMP with the Rap guanine-nucleotide exchange factor Epac1. J Mol Biol. 2001;306:1167–1177. [PubMed: 11237625]. DOI: 10.1006/jmbi.2001.4444

39. Chen H, Tsalkova T, Mei FC, et al. Zhou 5-Cyano-6-oxo-1,6-dihydropyrimidines as potent antagonists targeting exchange proteins directly activated by cAMP. J. Bioorg Med Chem Lett. 2012;22:4038–4043. DOI: 10.1016/j.bmcl.2012.04.082

40. Chen H, Yang Z, Ding C, et al. Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy. Eur J Med Chem. 2013;62:498–507. [PubMed: 23416191] DOI: 10.1016/j.ejmech.2013.01.023

41. Chen H, Tsalkova T, Chepurny OG, et al. Identification and characterization of small molecules as potent and specific EPAC2 antagonists. J Med Chem. 2013;56:952–962. DOI: 10.1021/jm3014162

42. Wild CT, Zhu Y, Na Y, et al. Functionalized N,N-Diphenylamines as Potent and Selective EPAC2 Inhibitors. ACS Med Chem Lett. 2016;7: 460–464. DOI: 10.1021/acsmedchemlett.5b00477

43. Tsalkova T, Mei FC, Li S, et al. Isoform-specific antagonists of exchange proteins directly activated by cAMP. Proc Natl Acad Sci USA. 2012 Nov 6;109(45):18613–8. DOI: 10.1073/pnas.1210209109

44. Chen H, Ding CY, Wild C, et al. Efficient Synthesis of ESI-09, A Novel Non-cyclic Nucleotide EPAC Antagonist. Tetrahedron Lett. 2013;54:1546–1549. DOI: 10.1016/j.tetlet.2013.01.024

45. Ye N, Zhu Y, Chen H, et al. Structure-Activity Relationship Studies of Substituted 2-(Isoxazol-3-yl)-2-oxo-N'-phenyl-acetohydrazonoyl Cyanide Analogues: Identification of Potent Exchange Proteins Directly Activated by cAMP (EPAC) Antagonists. J Med Chem. 2015;58(15):6033–6047. DOI: 10.1021/acs.jmedchem.5b00635

46. Na Ye, Yingmin Zhu, Zhiqing Liu, Fang C. Mei, Haiying Chen, Pingyuan Wang, Xiaodong Cheng, and Jia Zhou. Identification of novel 2-(benzo[d]isoxazol-3-yl)-2-oxo-N-phenylacetohydrazonoyl cyanide analogues as potent EPAC antagonists. Eur J Med Chem. 2017 July 07;134: 2–71. DOI: 10.1016/j.ejmech.2017.04.001

47. Courilleau D, Bisserier M, Jullian JC, et al. Identification of a tetrahydroquinoline analog as a pharmacological inhibitor of the cAMPbinding protein Epac. J Biolog Chem. 2012;287:44192–44202. DOI: 10.1074/jbc.M112.422956

48. Courilleau D, Bouyssou P, Fischmeister R, et al. The (R)-enantiomer of CE3F4 is a preferential inhibitor of human exchange protein directly activated by cyclic AMP isoform 1 (Epac1). Biochem Biophys Res Commun. 2013;440:443–448. DOI: 10.1016/j.bbrc.2013.09.107

49. Brown LM, Rogers KE, Aroonsakool N, et al. Allosteric inhibition of Epac: computational modeling and experimental validation to identify allosteric sites and inhibitors. J. Biol. Chem. 2014;289(42):29148–29157. DOI: 10.1074/jbc.M114.569319


Для цитирования:


Мокров Г.В., Никифорова Т.Д., Крыжановский С.А. Лиганды сигнальных белков Ерас как инструменты для изучения их биологической активности и создания новых оригинальных лекарственных средств. Фармакокинетика и Фармакодинамика. 2019;(4):3-17. https://doi.org/10.37489/2587-7836-2019-4-3-17

For citation:


Mokrov G.V., Nikiforova T.D., Kryzhanovskiy S.A. Epac signaling protein ligands as tools for studying their biological activity and creating new original drugs. Pharmacokinetics and Pharmacodynamics. 2019;(4):3-17. (In Russ.) https://doi.org/10.37489/2587-7836-2019-4-3-17

Просмотров: 86


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)