Animal models of depression
Abstract
About the Authors
T. L. GaribovaRussian Federation
V. A. Kraineva
Russian Federation
T. A. Voronina
Russian Federation
References
1. Wang S-M., Han C., Lee S-J., et al. Second Generation Antipsychotics in the Treatment of Major Depressive Disorder: An Update. Chonnam Med J. 2016; 52 (3): 159-172.
2. Kessler R.C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005; 62 (6): 593-602.
3. Hasler G. et al. Discovering endophenotypes for major depression. Neuropsychopharmacology. 2004; 29: 1765-1781.
4. Vogel H.G. Drug discovery and evaluation: pharmacological assays. Springer. Berlin. 3rd Edition; 2008; 1800.
5. Willner P., Mitchell P.J. The validity of animal models of predisposition to depression. Behav. Pharmacol. 2002; 13: 169-188.
6. Anisman H., Matheson K. Stress, depression, and anhedonia: caveats concerning animal models. Neurosci. Biobehav. Rev. 2005; 29: 525-546.
7. Vollmayr B., Mahlstedt M.M., Henn F.A. Neurogenesis and depression: what animal models tell us about the link. Eur. Arch. Psychiatry. Clin. Neurosci. 2007; 257: 300-303.
8. Яузина H.A., Комлева Ю.К., Салмина А.Б., Петрова М.М., Морозова Г.А., Малиновская H.A., Герцог Г.Е. Современные экспериментальные модели депрессии. Биомедицина. 2013; 1: 61-71.
9. Григорьян Г.А., Гуляева Н.В. Моделирование депрессии на животных: поведение как основа методологии, критериев оценки и классификации. Журнал ВНД. 2015; 65 (6): 643-660.
10. Kato T., Kasahara T., Kubota-Sakashita M., Kato T.M., Nakajima K. Animal models of recurrent or bipolar depression. Neuroscience. 2016; 321: 189-196.
11. Nestler E.J., Hyman S.E. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010; 13(10): 1161-1169.
12. Petit-Demouliere B., Chenu F., Bourin M. Forced swimming test: a review of antidepressant activity. Psychopharmacology. 2005; 177: 245-255.
13. Porsolt R.D., Pichon M.Le, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977; 266: 730-732.
14. Porsolt R.D., Bertin A., Jalfre M. Behavioural despair in mice: a primary screening test for antidepressants. Arch. Int. Pharmocodyn. Ther. 1977; 229: 327-336.
15. Porsolt R.D., Anton G., Blavet N., Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur. J. Pharmacol. 1978; 47: 379-391.
16. Borsini F., Meli A. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl.). 1988; 94: 147-160.
17. Cryan J.F., Mombereau C., Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 2005; 29: 571-625.
18. Steru L., Chermat R., Thierry B., Simon P. The tail suspension test: a new method for screening antidepressant drugs. Psychopharmacology. 1985; 85: 367-370.
19. Kurre Nielsen C., Arnt J., Sânchez C. Intracranial self-stimulation and sucrose intake differ as hedonic measures following chronic mild stress: interstrain and interindividual differences. Behavioural. Brain Research. 2000; 107 (1-2): 21-33.
20. Maier S.F., Seligman M.E.P. Learned helplessness - theory and evidence. J Exp Psychol-General. 1976; 105: 3-46.
21. Durgam R.C. Rodent models of depression: learned helplessness using a triadic design in rats. Curr. Protoc. Neurosci. 2001; Chapter 8: Unit 8 10B.
22. Chourbaji S., Zacher C., Sanchis-Segura C., Dormann C., Vollmayr B., Gass P. Learned helplessness: validity and reliability of depressive- like states in mice. Brain Res. Brain Res. Protoc. 2005; 16: 70-78.
23. Vollmayr B., Henn F.A. Learned helplessness in the rat: improvements in validity and reliability. Brain Res. Brain Res Protoc. 2001; 8 (1): 1-7.
24. Willner P. Chronic mild stress (CMS) revisited: consistency andbehavioral-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005; 52: 90-110.
25. Willner P., Muscat R., Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci. Biobehav. Rev. 1992; 16: 525-534.
26. Monleon S., D’Aquila P., Parra A., Simon V.M., Brain P.F., Willner P. Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology (Berl). 1995; 117: 453-457.
27. Stemmelin J., Cohen C., Yalcin I., Keane P., Griebel G. Implication of [beta]3-adrenoceptors in the antidepressant-like effects of amibegron using Adrb3 knockout mice in the chronic mild stress. Behav. Brain Res. 2010; 206: 310-312.
28. Blanchard R.J., McKittrick C.R., Blanchard D.C. Animal models of social stress: effects on behavior and brain neurochemical systems. Physiol. Behav. 2001; 73 (3): 261-271.
29. Krishnan V., Han M.H., Graham D.L., Berton O., Renthal W., Russo S.J. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007; 131: 391-404.
30. Cryan J.F., Slattery D.A. Animal models of mood disorders: Recent developments. Curr. Opin Psychiatry. 2007; 20: 1-7.
31. Kudryavtseva N.N., Bakshtanovskaya I.V., Koryakina L.A. Social model of depression in mice of C57BL/6J strain. Pharmacol. Biochem. Behav. 1991; 38: 315-320.
32. McEwen B.S. Early life influences on life-long patterns of behavior and health. Ment. Retard. Dev. Disabil. Res. Rev. 2003; 9: 149-154.
33. Meaney M.J. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci. 2001; 24: 1161-1192.
34. Duman C.H. Models of Depression II Vitamins and Hormones. 2010; 82 (10): 1-21.
35. Plotsky P.M., Meaney M.J. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res. 1993; 18: 195-200.
36. O’Neil M.F., Moore N.A. Animal models of depression: are there any? Hum. Psychopharmacol. 2003; 18: 239-254.
37. Dulawa S.C., Hen R. Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci. Biobehav. Rev. 2005; 29: 771-783.
38. Drugan R.C., Basile A.S., Ha J.H., Healy D., Ferland R.J. Analysis of the importance of controllable versus uncontrollable stress on subsequent behavioral and physiological functioning. Brain Res. Brain Res. Protoc. 1997; 2: 69-74.
39. Pellow S., Chopin P., File S.E., Briley M. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Meth. 1985; 14: 149-167.
40. Cairncross K.D., Wren A., Cox B., Schnieden H. Effects of olfactory bulbectomy and domicile on stress-induced corticosterone release in the rat. Physiol. Behav. 1977; 19: 485-487.
41. Schramm N.L., McDonald M.P., Limbird L.E. The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J. Neurosci. 2001; 21: 4875-4882.
42. Honma K., Honma S., Hiroshige T. Disorganization of the rat activity rhythm by chronic treatment with methamphetamine. Physiol Behav. 1986; 38: 687-695.
43. Ridder S., Chourbaji S., Hellweg R., Urani A., Zacher C., Schmid W. et al. Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J. Neurosci. 2005; 25: 6243-6250.
44. Pajer K., Andrus B.M., Gardner W., Lourie A., Strange B., Carnpo J., Bridge J., Blizinsky K., Dennis K., Vedell P., Churchil G.A., Redei E.M. Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression II Transl. Psychiatry. 2012; 2: 2-10.
45. Overstreet D.H. Selective breeding for increased cholinergic function: development of a new animal model of depression. Biol Psychiatry. 1986; 21: 49-58.
46. Roybal K., Theobold D., Graham A. et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA. 2007; 104(15): 6406-6411.
47. Yamasaki N., Maekawa M., Kobayashi K. et al. Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders.Mol Brain. 2008; 1: 18.
48. Canavello P.R., Egan R.J., Bergner C.L., Hart P.C., Cachat J.M., Kalueff A.V. Genetic animal models of depression II. Neuromethods. 2009; 44 (24): 191-200.
49. Bucan M., Abel T. The mouse: genetics meets behavior. Nat.Rev. Genet. 2002; 3: 114-123.
50. Krishnan V., Nestler E.J. Animal models of depression: molecular perspectives. Curr. Top. Behav. Neurosci. 2011; 7: 121 - 147.
51. Kato T., Kubota M., Kasahara T. Animal models of bipolar disorder. Neurosci Biobehav Rev. 2007; 31: 832-842.
52. Kasahara T., Kubota M., Miyauchi T., Noda Y., Mouri A., Nabeshima T., Kato T. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol. Psychiatry. 2006; 11: 577-593.
Review
For citations:
Garibova T.L., Kraineva V.A., Voronina T.A. Animal models of depression. Pharmacokinetics and Pharmacodynamics. 2017;(3):14-19. (In Russ.)