Review of existing methodologies to assess the activity of CYP2D6 using exogenous and endogenous markers
Abstract
About the Authors
A. D. AbdrashitovRussian Federation
G. N. Gildeeva
Russian Federation
G. V. Ramenskaya
Russian Federation
V. V. Smirnov
Russian Federation
References
1. Wähler F. // Tiedemann’s Z. Physiol. - 1824. -№ 1. - 142 p.
2. Ure A. On gouty concretions with a new method of treatment. // Pharm. J. Trans. - 1841. -№ 1. - 24 p.
3. Keller W. On the conversion of benzoic acid into hippuric acid. // Ann. Chem. Pharm. - 1842. -№ 43. - P. 108.
4. Conti A., Bickel M.H. History of drug metabolism: discoveries of the major pathways in the 19th century. // Drug Metab. Rev. - 1977. - № 6(1). - P. 1-50.
5. Dessaignes V. // C. R. Acad. Sci. - 1845. - № 21. - 1224 p.
6. Neumeister R. Lehrbuch der physiologischen Chemiemit Berucksichtigung der pathologischen Verhaltnisse. // Gustav Fischer. - 1893. -№ 2. -346 p.
7. Bachmann C., Bickel M.H. History of drug metabolism: the firsth al. fo fthe 20thcentury. // DrugMetab. Rev. -1985. -№ 16(3). -P. 185-253.
8. Caldwell J. Drug metabolism and pharmacogenetics: the British contribution to fields of international significance. // Br. J. Pharmacol.- 2006. -№ 147. -P. 89-99.
9. Wang P.P. et al. Purification and characterization of six cytochrome P - 450 isozymes from human liver microsomes. // Biochemistry. - 1983. - № 22. - P. 5375-5383.
10. Rendic S., Di Carlo F.J. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. // Drug Metab. Rev.- 1997. -№ 29. - P. 413-580.
11. Guengerich F.P. Cytochromes P450, drugs, and diseases. // Mol. Interv. - 2003. -№ 3. - P. 194-204.
12. Sheridan R.P. et al. Empirical regioselectivity models for human cytochromes P450 3A4, 2D6, and 2C9. // J. Med. Chem.- 2007. -№50(14). - P. 3173-3184.
13. Terfloth L., Bienfait B., Gasteiger J. Ligand - based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. // J. Chem. Inf. Model. - 2007. -№ 47. - P. 1688-1701.
14. Granvil C.P. et al. 4-Hydroxylation of debrisoquine by human CYP1A1 and its inhibition by quinidine and quinine. // J Pharmacol. Exp.Ther. - 2002. - № 301. - P. 1025-1032.
15. Popa-Burke I.G. et al. Streamlined system for purifying and quantifying a diverse library of compounds and the effect of compound concentration measurements on the accurate interpretation of biological assay results. // Anal. Chem. - 2004. -№ 76(24). - P. 7278-7287.
16. Drahushuk A.T. et al. Detection of CYP1A1 protein in human liver and induction by TCDD in precision -cut liver slices incubated in dynamic organ culture. // Carcinogenesis. - 1998. -№ 19. - P. 1361-1368.
17. Guengerich F.P. et al. Diversity in the oxidation of substrates by cytochrome P450 2D6: lack of an obligatory role of aspartate 301 - substrate electrostatic bonding. // Biochemistry. - 2002. -№ 41. - P. 11025-11034.
18. Кукес В.Г., Сычев Д.А., Ших Е.В. Изучение биотрансформации лекарственных средств - путь к повышению эффективности и безопасности фармакотерапии. // Врач. - 2007. - № 1. - С.6-8.
19. Sheldon H.P. et al. Cytochrome P450 2D6 Phenoconversion Is Common in Patients Being Treated for Depression: Implications for Personalized Medicine. // J.Clin. Psychiatry. - 2013. -№ 74(6). - P. 614-621.
20. Кукес В.Г. Метаболизм лекарственных средств: клинико-фармакологические аспекты. - М.: Издательство «Реафарм», 2004. - 144 с.
21. Смирнов В.В., Савченко А.Ю., Раменская Г.В. Разработка и валидация методики количественного определения эндогенного кортизола и 6-р-гидроксикортизола в моче с целью определения активности изофермента CYP 3A4. // Биомедицина. - 2010. - № 4. - С. 56-60.
22. Distlerath L.M., Guengerich F.P. Characterization of ahuman liver cytochrome P-450 involved in the oxidation of debrisoquine and other drugs by using antibodies raised to the analogous rat enzyme. // Proc. Natl. Acad. Sci. - 1984. - № 81. - P. 7348-7352.
23. Griese E.U. et al. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. // Pharmacogenetics. - 1998. -№ 8. - P. 15-26.
24. Pedersen R.S., Damkier P., Brosen K. Tramadol as a new probe for cytochrome P450 2D6 phenotyping: a population study. // Clin.Pharmacol. Ther. - 2005. -№ 77. - P. 458-467.
25. Poulsen L. et al. The hypoalgesic effect of tramadol in relation to CYP2D6. // Clin. Pharmacol.Ther. - 1996. -№ 60. - P. 636-644.
26. Subrahmanyam V. et al. Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. // Drug Metab.Dispos. - 2001. -№ 29. - P. 1146-1155.
27. Kim M. et al. Inhibition of the enantio selective oxidative metabolism of metoprolol by verapamil in human liver microsomes. // Drug Metab. Dispos. - 1993. - № 21. - P. 309-317.
28. Labbe L. et al. Effect of gender, sex hormones, time variables and physiological urinary pH on apparent CYP2D6 activity as assessed by metabolic ratios of marker substrates. // Pharmacogenetics. - 2000. -№ 10. - P. 425-438.
29. Tegeder I., Lotsch J., Geisslinger G. Pharmacokinetics of opioids in liver disease. // Clin.Pharmacokinet. - 1999. -№ 37. P. 17-40.
30. von Moltke L.L. et al. Multiple human cytochromes contribute to biotransformation of dextromethorphan in-vitro: role of CYP2C9, CYP2C19, CYP2D6, and CYP3A. // J. Pharm.Pharmacol. - 1998. -№ 50. - P. 997-1004.
31. Dayer P. et al. Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 dbl/bufI). // Biochem.Biophys. Res. Commun. - 1988. - № 152. -P. 411-416.
32. Chainuvati S. et al. Combined phenotypic assessment of cytochrome p4501A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and xanthine oxidase activities with the “Cooperstown 5+1 cocktail”. // Clin.Pharmacol.Ther. - 2003. - № 74. - P. 437-447.
33. Schellens J.H. et al. Lack of pharmacokinetic interaction between nifedipine, sparteine and phenytoin in man. // Br. J.Clin.Pharmacol. - 1991. - № 31. - P. 175-178.
34. Cerqueira P.M. et al. Influence of chronic renal failure on stereo selective metoprolol metabolism in hypertensive patients. // J Clin.Pharmacol. - 2005. -№ 45. - P. 1422-1433
35. Yu A. et al. Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. // Pharmacogenetics. - 2003. - № 13. - P. 307-319.
36. Felmlee M.A. et al. Cytochrome P450 expression and regulation in CYP3A4/CYP2D6 double transgenic humanized mice. // Drug Metab.Dispos. - 2008. - № 36. - P. 435-44.
37. Zhang W.Y. et al. Expression and functional analysis of CYP2D6.24, CYP2D6.26, CYP2D6.27 and CYP2D7 isozymes. // Drug Metab.Dispos. - 2009. - № 37. - P. 1-4.
38. Jiang X.L., Shen H.W., Yu A.M. Pinoline May be Used as a Probe for CYP2D6 Activity. // Drug Metabolism and Disposition. - 2013. - № 37(3). - P. 443-446.
Review
For citations:
Abdrashitov A.D., Gildeeva G.N., Ramenskaya G.V., Smirnov V.V. Review of existing methodologies to assess the activity of CYP2D6 using exogenous and endogenous markers. Pharmacokinetics and Pharmacodynamics. 2015;(1):4-11. (In Russ.)