Preview

Pharmacokinetics and Pharmacodynamics

Advanced search

Pharmacokinetics of antisense oligonucleotide drugs

Abstract

This review covers the pharmacokinetic characteristics of the various antisense oligonucleotide drugs. A comparison of the pharmacokinetics of drugs first and second generation. As well as the influence on the pharmacokinetics of the chemical modification of the molecule.

About the Authors

M. R. Khaitov
FGBI «Institute of Immunology» FMBA of Russia, Moscow
Russian Federation


V. V. Smirnov
FGBI «Institute of Immunology» FMBA of Russia, Moscow
Russian Federation


References

1. Adjei A.A., Dy G.K., Erlichman C. et al. A phase I trial of ISIS 2503, an antisense inhibitor of H-ras, in combination with gemcitabine in patients with advanced cancer. // Clin. Cancer Res. 2003. Vol. 9, №1. P. 115.

2. Benimetskaya L., Loike J.D., Loike G. et al. Mac-1 (CD11b/CD18) is an ODN-binding protein. // Nat. Med. 1997. Vol. 3, №4. P. 414.

3. Benimetskaya L., Tonkinson J.L., Koziolkiewicz M. et al. Binding of phosphorothioate ODNs to basic fibroblast growth factor, recombinant soluble CD4, laminin and fibronectin in P-chirality independent. // Nucl. Acids Res. 1995. Vol. 23, №21. P. 4239.

4. Bijsterbosch M.K., Manoharan M., Rump E.T. et al. In vitro fate of phosphorothioate antisense ODNs: predominant uptake by scavenger receptors on endothelial cells. // Nucl. Acids Res. 1997. Vol. 25, №16. P. 3290.

5. Bijsterbosch M.K., Rump E.T., De Vrueh R.L. et al. Modulation of plasma protein binding and in vitro liver cell uptake of phosphorothioate ODNs by cholesterol conjugation. // Nucl. Acids Res. 2000. Vol. 28, № 14. P. 2717.

6. Brown D.A., Kang S.H., Gryaznov S.M. et al. Effect of phosphorothioate modification of ODNs on specific protein binding. // J. Biol. Chem. 1994. Vol. 269, №43. Р. 26801.

7. Butler M., Crooke R.M., Graham M.J. et al. Phosphorothioate ODNs distribute similarly in class A scavenger receptor knockout and wild-type mice. // J. Pharmacol. Exp. Ther. 2000. Vol. 292, №2. P. 489.

8. Butler M., Hayes C.S., Chappell A., Murray S.F., Yaksh T.L., Hua X.Y. Spinal distribution and metabolism of 2_-O-(2-methoxyethyl)-modified ASOs after intrathecal administration in rats. // Neuroscience. 2005. Vol. 131, №3. P. 705.

9. Butler M., Stecker K., Bennett C.F. Cellular distribution of phosphorothioate ODNs in normal rodent tissues. // Lab. Invest. 1997. Vol. 77, №4. P. 379.

10. Cossum P.A., Sasmor H., Dellinger D. et al. Disposition of the 14C-labeled phosphorothioate ASO ISIS 2105 after intravenous administration to rats. // J. Pharmacol. Exp. Ther. 1993. Vol. 267, №3. P. 1181.

11. Cossum P.A., Troung L., Owens S.R. et al. Pharmacokinetics of a 14C-labeled phosphorothioate ASO, ISIS 2105, after intradermal administration to rats. // J. Pharmacol. Exp. Ther. 1994. Vol. 269, №1. P. 89.

12. Crooke S.T., Graham M.J., Zuckerman J.E. et al. Pharmacokinetic properties of several novel ASO analogs in mice. // J. Pharmacol. Exp. Ther. 1996. Vol. 277, №2. P. 923.

13. Driver S.E., Robinson G.S., Flanagan J., Shen W., Smith L.E.H., Thomas D.W., Roberts P.C. ASO-based inhibition of embryonic gene expression. // Nat. Biotechnol. 1999. Vol. 17. P. 1184.

14. Eckstein F. Phosphorothioate ODNs: what is their origin and what is unique about them? //Antisense Nucl. Acid Drug Dev. 2000. Vol. 10, №2. Р. 117.

15. Gaus H.J., Owens S.R., Winniman M., Cooper S., Cummins L.L. On-line HPLC electrospray mass spectrometry of phosphorothioate ASO metabolites. // Anal. Chem. 1997. Vol. 69, №3. P. 313.

16. Geary R.S. Current assessment of PK/PD relationships for antisense therapeutics. // World Congress of Pharmacy and Pharmaceutical Sciences, Nice, France, 2002.

17. Geary R.S., Bradley J.D., Watanabe T. et al. Lack of pharmacokinetic interaction for ISIS 113715, a 2_-O-methoxyethyl modified antisense oligonucleotide targeting protein tyrosine phosphatase 1B messenger RNA, with oral antidiabetic compounds metformin, glipizide or rosiglitazone. // Clin. Pharmacokinet. 2006. Vol. 45, №8. P. 789.

18. Geary R.S., Leeds J.M., Fitchett J. et al. Pharmacokinetics and metabolism in mice of a phosphorothioate ASO antisense inhibitor of C-raf-1 kinase expression.// Drug Metab. Dispos. 1997. Vol. 25, №11. Р. 1272.

19. Geary R.S., Leeds J.M., Henry S.P., Monteith D.K., Levin A.A. Antisense oligonucleotide inhibitors for the treatment of cancer: 1. Pharmacokinetic properties of phosphorothioate ODNs. // Anticancer Drug Des. 1997. Vol. 12, №5. Р. 383.

20. Geary R.S., Leeds J.M., Shanahan W. et al. Sequence independent plasma and tissue pharmacokinetics for 3 antisense phosphorothioate ASOs: mouse to man. // in American Association of Pharmaceutical Scientists, Pharm. Research, Plenum Press, Seattle, Washington. 1996. Р. S.

21. Geary R.S., Teng C.L., Truong L. et al. First pass hepatic extraction of a partially modified chimeric antisense oligonucleotides in Beagle dogs. // in Annual Meeting of the American Association of Pharmaceutical Scientists, Indianapolis, IN, 2000. P. 216.

22. Geary R.S., Ushiro-Watanabe T., Truong L et al. Pharmacokinetic properties of 2_-O-(2-methoxyethyl)-modified ASO analogs in rats. // J. Pharmacol. Exp. Ther. 2001. Vol. 296, №3. Р. 890.

23. Geary R.S., Yu R.Z., Levin A.A. Pharmacokinetics of phosphorothioate antisense ODNs. // Curr. Opin. Invest. Drugs. 2001. Vol. 2, №4. Р. 562.

24. Geary R.S., Yu R.Z., Watanabe T. et al. Pharmacokinetics of a tumor necrosis factor-alpha phosphorothioate 2_-O-(2-methoxyethyl) modified antisense oligonucleotides: comparison across species. // Drug Metab. Dispos. 2003. Vol. 31, №11. P. 1419.

25. Giacomini K.M., Sugiyama Y. Membrane transporters and drug response, in Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 11th ed., Brunton, L.L., ed., McGraw-Hill, New York, 2006. P. 41.

26. Gleave M., Chi K.N. Knock-down of the cytoprotective gene, clusterin, to enhance hormone and chemosensitivity in prostate and other cancers. // Ann. NY Acad. Sci. 2005. Vol.1058. P. 1.

27. Gleave M., Miyake H. Use of antisense oligonucleotides targeting the cytoprotective gene, clusterin, to enhance androgen- and chemo-sensitivity in prostate cancer. // World J. Urol. 23. 2005. №1. P. 38.

28. Glover J.M., Leeds J.M., Mant T.G. et al. Phase I safety and pharmacokinetic profile of an intercellular adhesion molecule-1 antisense ODN (ISIS 2302). // J. Pharmacol. Exp. Ther. 1997. Vol. 282, №3. Р. 1173.

29. Graham M.J., Crooke S.T., Monteith D.K. et al. In vitro distribution and metabolism of a phosphorothioate ASOwithin rat liver after intravenous administration. // J. Pharmacol. Exp. Ther. 1998. Vol. 286, №1. P. 447.

30. Guvakova M.A., Yakubov L.A., Vlodavsky I., Tonkinson J.L., Stein C.A. Phosphorothioate ODNs bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. // J. Biol. Chem. 1995. Vol. 270. P.2620.

31. Henry S.P., Denny K.H., Templin M.V., Yu R.Z., Levin A.A. Effects of human and murine antisense oligonucleotide inhibitors of ICAM-1 on reproductive performance, fetal development, and post-natal development in mice. // Birth Defects Res. B Dev. Reprod. Toxicol. 2004. Vol. 71, №6. P. 359.

32. Hua X.Y., Moore A., Malkmus S. et al. Inhibition of spinal protein kinase C alpha expression by an antisense oligonucleotide attenuates morphine infusion-induced tolerance. // Neuroscience. 2002. Vol. 113, №1. P. 99.

33. Jackson J.K., Gleave M.E., Gleave J., Burt H.M. The inhibition of angiogenesis by antisense oligonucleotides to clusterin. // Angiogenesis. 2005. Vol. 8, №3. P. 229.

34. Kastelein J.J.P., Wedel M.K., Baker B.F. et al. Potent reduction of apolipoprotein B and Low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. // Circulation. 2006. Vol. 114, №16. P. 1729.

35. Koziolkiewicz M., Krakoviak A., Kwinkowski M., Boczkowska M., Stec W.J. Stereodifferntiation — the effect of P chirality of oligo(nucleoside phosphorothioates) on the activity of bacterial RNase H. // Nucl. Acids Res. 1995. Vol.23, №24. Р. 5000.

36. Leeds J.M., Geary R.S. Pharmacokinetic properties of phosphorothioate ASOs in humans, in Antisense Research and Applications, 1st ed., Crooke, S. T., ed., Springer, Heidelberg, 1998. P. 217.

37. Leeds J.M., Henry S.P., Geary R.S., Burckin T.A., Levin A.A. Comparison of the pharmacokinetics of subcutaneous and intravenous administration of a phosphorothioate oligodeoxynucleotide in cynomolgus monkeys. // Antisense Nucl. Acid Drug Dev. 2000. Vol.10, №6. Р. 435.

38. Levin A.A. A review of issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. // Biochim. Biophys. Acta. 1999. Vol.1489, №1. Р. 69.

39. Levin A.A., Geary R.S., Leeds J.M. et al. The pharmacokinetics and toxicity of phosphorothioate ASOs, in Biotechnology and Safety Assessment, 2nd ed., Thomas, J. A., ed., Taylor & Francis, Philadelphia, PA, 1998. Р. 151.

40. Levin A.A., Henry S.P., Bennett C.F. et al. Preclinical development of antisense therapeutics, in Novel Therapeutics from Modern Biotechnology: From Laboratory to Human Testing, 1st ed., Oxender D.L. and Post L.E., eds., Springer-Verlag, Heidelberg, Germany, 1998. Р. 131.

41. Levin A.A., Henry S.P., Monteith D., Templin M. Toxicity of antisense oligonucleotides. // in Antisense Drug Technology, Crooke, S. T., ed., Marcel Dekker, New York, 2001. P. 201.

42. Loke S.L., Stein C.A., Zhang X.H. et al. Characterization of ASO transport into living cells. // Proc. Natl. Acad. Sci. USA. 1989. Vol. 86. P. 3474.

43. Lorenz P., Misteli T., Baker B.F., Bennett C.F., Spector D.L. Nucleocytoplasmic shuttling: a novel in vitro property of antisense phosphorothioate ODNs. // Nucl. Acids Res. 2000. Vol. 28, №2. P. 582.

44. Miner P.B., Geary R.S., Matson J. et al. Bioavailability and therapeutic activity of alicaforsen (ISIS 2302) administered as a rectal retention enema to subjects with active ulcerative colitis. // Ailment Pharmacol. Ther. 2006. Vol. 23, №10. Р. 1427.

45. Mou T.C., Gray D.M. The high binding affinity of phosphorothioate-modified oligomers for Ff gene 5 protein is moderated by the addition of C-5 propyne or 2_-O-methyl modifications. // Nucl. Acids Res. 2002. Vol. 30, №3. Р. 749.

46. Nicklin P.L., Craig S.J., Phillips J.A. Pharmacokinetic properties of phosphorothioates in animals—absorption, distribution, metabolism and elimination, in Antisense Research and Applications, 1st ed., Crooke, S. T., ed., Springer, Berlin, 1998. P. 141.

47. Peng B., Andrews J., Nestorov I. et al. Tissue distribution and physiologically based pharmacokinetics of antisense phosphorothioate ASO ISIS 1082 in rat. // Antisense Nucl. Acid Drug Dev. 2001. Vol. 11, №1. P. 15.

48. Phillips J.A., Craig S.J., Bayley D. et al. Pharmacokinetics, metabolism and elimination of a 20-mer phosphorothioate ODN (CGP 69846A) after intravenous and subcutaneous administration. // Biochem. Pharmacol. 1997. Vol. 54, №6. Р. 657.

49. Sawai K., Mahato R.I., Oka Y., Takakura Y., Hashida M. Disposition of ASOs in isolated perfused rat kidney: involvement of scavenger receptors in their renal uptake. // J. Pharmacol. Exp. Ther. 1996. Vol. 279, №1. P. 284.

50. Sewell L.K., Geary R.S., Baker B.F. et al. Phase I trial of ISIS 104838, a 2_-methoxyethyl modified antisense oligonucleotides targeting tumor necrosis factor-alpha. // J. Pharmacol. Exp. Ther. 2002. Vol. 303, №3. Р. 1334.

51. Slim G., Gait M.J. Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. // Nucl. Acids Res. 1991. Vol. 19, №6. Р. 1183.

52. Snyder R.M., Mirabelli C.K., Crooke S.T. Cellular association, intracellular distribution, and efflux of auranofin via sequential ligand exchange reactions. // Biochem. Pharmacol. 1986. Vol. 35, №6. P. 923.

53. Soucy N.V., Riley J.P., Templin M.V. et al. Maternal and fetal distribution of a phosphorothioate ASO in rats after intravenous infusion. // Birth Defects Res. B Dev. Reprod. Toxicol. 2006. Vol. 77, №1. P. 22.

54. Spitzer S., Eckstein F. Inhibition of deoxyribonucleases by phosphorothioate groups in oligodeoxyribonucleotides. // Nucl. Acids Res. 1988. Vol. 16, №24. Р. 11691.

55. Stavchansky S., Geary R.S., Cho M. Pharmacokinetics and hepatic first pass effect of an antisense oligonucleotide (ISIS 2302) in rats. // in Annual Meeting of the American Association of Pharmaceutical Scientists, Indianapolis, IN, 2000. P. 216.

56. Templin M.V., Levin A.A., Graham M.J. et al. Pharmacokinetic and toxicity profile of a phosphorothioate ASO following inhalation delivery to lung in mice. // Antisense Nucl. Acid Drug Dev. 2000. Vol. 10, №5. Р. 359.

57. Teplova M., Minasov G., Tereshko V. et al. Crystal structure and improved antisense properties of 2_-O-(2-methoxyethyl)-RNA. // Nat. Struct. Biol. 1999. Vol.6, №6. Р.535.

58. Villalona-Calero M.A., Ritch P., Figueroa J.A. et al. A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-alpha, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. // Clin. Cancer Res. 2004. Vol. 10, №18 Pt 1. P. 6086.

59. Watanabe T.A., Geary R.S., Levin A.A. Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302). // ASOs. 2006. Vol. 16, №2. P. 169.

60. White A.P., Reeves K.K., Snyder E. et al. Hydration of single-stranded phosphodiester and phosphorothioate oligodeoxyribonucleotides. // Nucl. Acids Res. 1996. Vol. 24, №16. Р. 3261.

61. Wilson D.M. 3rd, Ape1 abasic endonuclease activity is regulated by magnesium and potassium concentrations and is robust on alternative DNA structures. // J. Mol. Biol. 2005. Vol. 345, №5. P. 1003.

62. Yu D., Kandimalla E.R., Roskey A. et al. Stereo-enriched phosphorothioate ODNs: synthesis, biophysical and biological properties. // Bioorg. Med. Chem. 2000. Vol.8, №1. Р. 275.

63. Yu R.Z., Baer B., Chappel A. et al. Development of an ultrasensitive noncompetitive hybridization-ligation enzyme-linked immunosorbent assay for the determination of phosphorothioate ODN in plasma. // Anal. Biochem. 2002. Vol. 304, №1. P. 19.

64. Yu R.Z., Geary R.S., Leeds J.M. et al. Comparison of pharmacokinetics and tissue disposition of an antisense phosphorothioate ASO targeting human Ha-ras mRNA in mouse and monkey. // J. Pharm. Sci. 2001. Vol. 90, №2. P. 182.

65. Yu R.Z., Geary R.S., Levin A.A. Application of novel quantitative bioanalytical methods for pharmacokinetic and pharmacokinetic/ pharmacodynamic assessments of antisense oligonucleotides. // Curr. Opin. Drug Discov. Dev. 2004. Vol. 7, №2. Р. 195.

66. Yu R.Z., Kim T.W., Hong A. et al. Cross species pharmacokinetic comparison from mouse to man of a second generation antisense oligonucleotide ISIS 301012, targeting human apolipoprotein B-100. // Drug Metab. Dispos. 2007. Vol. 35. P. 460.

67. Yu R.Z., Zhang H., Geary R.S. et al. Pharmacokinetics and pharmacodynamics of an antisense phosphorothioate ASO targeting Fas mRNA in mice. // J. Pharmacol. Exp. Ther. 2001. Vol. 296, №2. P. 388.

68. Zinker B.A., Rondinone C.M., Trevillyan J.M. et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99, №17. P. 1137.


Review

For citations:


Khaitov M.R., Smirnov V.V. Pharmacokinetics of antisense oligonucleotide drugs. Pharmacokinetics and Pharmacodynamics. 2013;(1):3-13. (In Russ.)

Views: 1093


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7836 (Print)
ISSN 2686-8830 (Online)