Сравнение нейропротекторных свойств дипептидных миметиков 1-й, 2-й и 4-й петель мозгового нейротрофического фактора на модели окислительного стресса *in vitro*

Логвинов И.О., Тарасюк А.В., Сазонова Н.М., Антипов П.И., Антипова Т.А., Гудашева Т.А.

ФГБНУ «НИИ фармакологии им. В.В. Закусова», Москва

Резюме. Цель настоящей работы состояла в сравнении нейропротекторных свойств димерных дипептидных миметиков 1-й, 2-й и 4-й петель BDNF — ГСБ-214 (гептаметилендиамид бис-моносукцинил-метионил-серина), ГТС-201 (гексаметилендиамид бис-коносукцинил-серил-лизина) и ГСБ-106 (гексаметилендиамид бис-моносукцинил-серил-лизина) на гиппокампальных клетках линии HT-22 в условиях окислительного стресса. Установлено, что миметик 4-й петли BDNF проявляет нейропротекторный эффект в более низких концентрациях по сравнению с миметиками на основе 1-й и 2-й петель, как при внесении за 24 часа до повреждения, так и сразу после деструктивного воздействия.

Ключевые слова: нейропротекция; окислительный стресс; BDNF; димерные дипептидные миметики; ГСБ-214; ГТС-201; ГСБ-106

Для цитирования:

Логвинов И.О., Тарасюк А.В., Сазонова Н.М., Антипов П.И., Антипова Т.А., Гудашева Т.А. Сравнение нейропротекторных свойств дипептидных миметиков 1-й, 2-й и 4-й петель мозгового нейротрофического фактора на модели окислительного стресса *in vitro* // Фармакокинетика и фармакодинамика. — 2018. — №3. — C.37—41. DOI: 10.24411/2587-7836-2018-10022.

Comparison of neuroprotective properties of the dipeptide mimetics of the 1st, 2nd and 4th loops of the brain-derived neurotrophic factor on the model oxidative stress *in vitro*

Logvinov I.O., Tarasiuk A.V., Sazonova N.M., Antipov P.I., Antipova T.A., Gudasheva T.A.

FSBI "Zakusov Institute of Pharmacology", Moscow

Resume. The purpose of this study was to compare neuroprotective properties of the dimeric dipeptide mimetics of the 1st, 2nd and 4th loops of BDNF – GSB-214 (heptamethylenediamide bis-monosuccinyl-methionyl-serine), GTS-201 (hexamethylenediamide bis-hexanoyl-seryl-lysine) and GSB-106 (hexamethylenediamide bis-monosuccinyl-seryl-lysine) in the HT-22 hippocampal cells in conditions of oxidative stress. It has been established that the mimetic of the 4th loop of BDNF shows a neuroprotective effect in lower concentrations compared to mimetics based on the 1st and 2nd loops when applied 24 hours before and immediately after the damages.

Keywords: neuroprotection; oxidative stress; BDNF; dimeric dipeptide mimetics; GSB-214; GTS-201; GSB-106

For citations:

Logvinov IO, Tarasiuk AV, Sazonova NM, Antipov PI, Antipova TA, Gudasheva TA. Comparison of neuroprotective properties of the dipeptide mimetics of the 1st, 2nd and 4th loops of the brain-derived neurotrophic factor on the model oxidative stress *in vitro*. *Farmakokinetika i farmakodinamika*. 2018;3:37–41. (In Russ). DOI: 10.24411/2587-7836-2018-10022.

Введение

Мозговой нейротрофический фактор (BDNF) относится к семейству нейротрофинов. Благодаря своей способности увеличивать выживаемость нейронов нейротрофины рассматриваются как перспективные антинейродегенеративные средства. BDNF особенно привлекателен в этом отношении, так как он улучшает выживание и предупреждает дегенерацию нейронов, вовлеченных в такие заболевания, как амиотрофический латеральный склероз (мотонейроны), сенсорные нейропатии (сенсорные нейроны), болезнь Альцгеймера (базальные холинергичекие нейроны переднего мозга), болезнь Паркинсона (дофаминергические нейроны чёрной субстанции). В ряде нейродегенеративных заболеваний выявлено снижение содержания нейротрофина BDNF [1, 2]. Существуют хорошо документированные доказательства участия BDNF в патогенезе депрессии. При центральном введении BDNF проявляет выраженный антидепрессивный эффект [3]. Несмотря на многообещающие данные доклинических исследований, клинические испытания BDNF

в качестве лечебного средства не увенчались успехом в первую очередь из-за таких фармакокинетических ограничений, как малое время жизни в кровотоке, низкая способность проникать через гематоэнцефалический барьер и наличие нежелательных побочных эффектов [4, 5].

В рамках развития новой группы нейропротекторов в ФГБНУ «НИИ фармакологии имени В.В. Закусова» на основе гипотезы о том, что фармакофорными участками нейротрофинов являются β-изгибы их шпилькообразных петель, были синтезированы димерные дипептидные миметики 1-й, 2-й и 4-й петли BDNF – ГСБ-214 (гептаметилендиамид бис-моносукцинил-метионил-серина),ГТС-201(гексаметилендиамид бис-гексаноил-серил-лизина) и ГСБ-106 (гексаметилендиамид бис-моносукцинил-серил-лизина) соответственно. Миметики, аналогично BDNF, проявляли нейропротекторную активность на модели окислительного стресса в культуре гиппокампальных нейронов линии НТ-22 при внесении за 24 ч до повреждения в интервале концентраций $10^{-5} - 10^{-8} \text{ M } [6, 7].$

Цель настоящей работы состояла в сравнительном изучении нейропротекторных свойств полученных миметиков BDNF в зависимости от времени внесения.

Материалы и методы

Культура гиппокампальных клеток линии HT-22

Иммортализованные клетки гиппокампа мыши линии HT-22 рассеивали на 96-луночные планшеты обработанные поли-Д-лизином (BD Biosciences, США; 5 мкг/см²) с плотностью 3,5 тыс. на лунку в среде ДМЕМ (Thermo Fisher Scientific, США), содержащей 5 % телячьей эмбриональной сыворотки (Gibco Life Technologies, США) и 2 мМ L-глутамина (ICN, Германия), и инкубировали при 37 °C в атмосфере 5 % CO_2 .

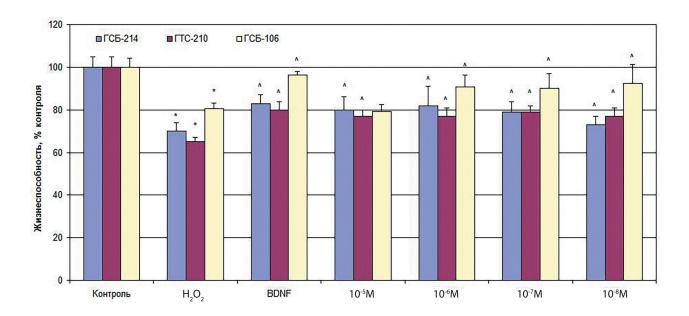
Модель окислительного стресса

Окислительный стресс моделировали путём внесения в клеточную среду культивирования раствора перекиси водорода (H_2O_2) в конечной концентрации 1,5 мМ. Клетки с H_2O_2 инкубировали в атмосфере 5 % CO_2 при 37 °C 30 мин. Далее среду заменяли на нормальную и через 4 ч определяли жизнеспособность клеток с помощью МТТ-теста (бромида 3-(4,5-диметилтиазол-2-ил)-2,5 дифенилтетразолия (МТТ) (Sigma, США)) [8]. В качестве положительного контроля использовали BDNF (BD Bioscience, Великобритания) в конечной концентрации 50 нг/мл (10^{-9} М). ГСБ-214, ГТС-201 и ГСБ-106 вносили

в конечных концентрациях $10^{-5}-10^{-8} M$ за 24 ч до повреждения клеток и после отмывки H_2O_2 . Оптическую плотность измеряли на спектрофотометре "Multiscan EX" (Thermo, США) при длине волны $600 \ \mathrm{hm}$.

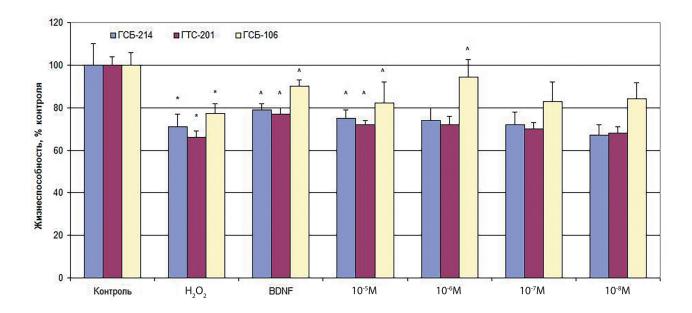
Статистический анализ

Статистическую обработку данных проводили с использованием критерия Краскела-Уоллиса с последующим тестом по Данну (ANOVA). Данные представлены с указанием стандартного отклонения mean \pm s.d. Результаты считались достоверными при $p \le 0,05$.


Результаты и их обсуждение

Окислительный стресс является важным звеном повреждения нейронов при различных нейродегенеративных заболеваниях. Последовательность событий, происходящих при этом в клетке, достаточно хорошо изучена [9]. Можно считать доказанным вовлечение окислительного стресса в механизм повреждения мозга при ишемии, нейродегенеративных заболеваниях и других патологических состояниях. Поэтому модель окислительного стресса особенно интересна с точки зрения исследования действия новых потенциальных нейропротекторов.

Для выявления нейропротекторного действия димерных дипептидных миметиков ГСБ-214, ГТС-201 и ГСБ-106 была использована модель окислительного стресса на культуре иммортализованных клеток гиппокампа мыши линии HT-22.


Нами показано, что перекись водорода, внесенная в культуральную среду, достоверно снижает жизнеспособность клеток HT-22. BDNF (10-9M) защищал клетки от гибели как при внесении за 24 ч до повреждения, так и сразу после деструктивного воздействия. Ранее было установлено, что миметики 1-й петли – ГСБ-214, 2-й петли – ГТС-201 и 4-й петли — ГСБ-106 обладали нейропротекторным действием при внесении за 24 ч до окислительного стресса (рис. 1) [6, 7]. При этом в концентрации $10^{-8}\mathrm{M}$ нейропротекторный эффект ГСБ-214 и ГТС-201 начинает убывать, а защитное действия ГСБ-106 было наиболее выражено. В данном исследовании выявлено, что при внесении сразу после повреждения дипептиды ГСБ-214 и ГТС-201 достоверно увеличивали жизнеспособность гиппокампальных нейронов только в концентрации 10-5М, в то время как ГСБ-106 оказывал нейропротекторное действие в более низкой концентрации 10-6М (рис. 2).

Таким образом, в данной работе в экспериментах *in vitro* на модели окислительного стресса было установлено, что димерные дипептидные миметики, соз-

Рис. 1. Влияние различных концентраций ГСБ-214, ГТС-201 и ГСБ-106 на жизнеспособность гиппокампальных нейронов линии HT-22 на модели окислительного стресса (результаты МТТ-теста). Внесение пептидов за 24 ч до перекиси водорода

Примечания: $*-p \le 0.05$ по сравнению с контролем; $^{\wedge}-p \le 0.05$ по сравнению с перекисью водорода.

Рис. 2. Влияние различных концентраций ГСБ-214, ГТС-201 и ГСБ-106 на жизнеспособность гиппокампальных нейронов линии HT-22 на модели окислительного стресса (результаты МТТ-теста). Внесение пептидов сразу после отмывки перекиси водорода

Примечания: $^* - p \le 0.05$ по сравнению с контролем; $^- - p \le 0.05$ по сравнению с перекисью водорода.

данные на основе β -изгибов 1-й петли (ГСБ-214), 2-й петли (ГТС-201) и 4-й петли (ГСБ-106) BDNF, обладают более выраженным нейропротекторным действием при внесении за 24 ч до повреждения. Также выявлено различие в проявлении нейропротекторного

эффекта у изученных дипептидов. Миметик ГСБ-106 в более низких концентрациях увеличивает жизнеспособность гиппокампальных нейронов линии НТ-22 в условиях окислительного стресса. Наличие нейропротекторного эффекта у всех исследованных миметиков

может служить подтверждением рабочей гипотезы о том, что фармакофорными участками нейротрофинов являются центральные фрагменты β-изгибов их шпилькообразных петель как геометрически наиболее выгодные для взаимодействия с рецептором. Полученные в работе данные показывают целесообразность дальнейшего изучения димерных дипептидных миметиков 1-й, 2-й и 4-й петель BDNF в качестве соединений с потенциальными нейропротекторными свойствами.

Вывод

Установлено, что миметик 4-й петли BDNF проявляет нейропротекторный эффект в более низких концентрациях на модели окислительного стресса по сравнению с миметиками на основе 1-й и 2-й петель как при внесении за 24 ч до повреждения, так и сразу после деструктивного воздействия.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Участие авторов. Логвинов И.О. — исполнение экспериментальной работы, анализ и интерпретация результатов, написание текста; Тарасюк А.В. — синтез исследуемых соединений, написание текста; Сазонова Н.М. — синтез исследуемых соединений; Антипов П.И. — анализ исследуемых соединений методом ВЭЖХ; Антипова Т.А. — анализ и интерпретация результатов, написание и редактирование текста; Гудашева Т.А. — работа над текстом статьи, редактирование и финальное утверждение рукописи.

СВЕДЕНИЯ ОБ АВТОРАХ

Логвинов Илья Олегович

Автор, ответственный за переписку

e-mail: logvinov_ilya@mail.ru ORCID ID: 0000-0001-6101-1035 SPIN-код: 9909-9630

н. с. лаборатории фармакологии нейропротекции, ФГБНУ «НИИ фармакологии имени В.В. Закусова», Москва

Тарасюк Алексей Валерьевич

ORCID ID: 0000-0001-9750-4157

SPIN-код: 9670-2415

н. с. лаборатории пептидных биорегуляторов отдела химии лекарственных средств, ФГБНУ «НИИ фармакологии имени В.В. Закусова», Москва

Сазонова Нелля Михайловна

ORCID ID: 0000-0002-7608-7419

SPIN-код: 8835-7887

к. х. н., с. н. с. лаборатории пептидных биорегуляторов отдела химии лекарственных средств, ФГБНУ «НИИ фармакологии имени В.В. Закусова», Москва

Антипов Пётр Иванович

ORCID ID: 0000-0002-6093-8805

SPIN-код: 2591-3379

к. х. н., с. н. с. лаборатории пептидных биорегуляторов отдела химии лекарственных средств, ФГБНУ «НИИ фармакологии имени В.В. Закусова», Москва

Logvinov Ilya

Corresponding author

e-mail: logvinov_ilya@mail.ru ORCID ID: 0000-0001-6101-1035

SPIN code: 9909-9630

Research Scientist, Laboratory of neuroprotection pharmacology, FSBI «Zakusov Institute of

Pharmacology», Moscow

Tarasiuk Aleksey

ORCID ID: 0000-0001-9750-4157

SPIN code: 9670-2415

Research Scientist, Laboratory of peptide bioregulators, Department of medicinal chemistry, FSBI «Zakusov Institute of Pharmacology», Moscow

Sazonova Nellya

ORCID ID: 0000-0002-7608-7419

SPIN code: 8835-7887

PhD, Senior Research Scientist, Laboratory of peptide bioregulators, Department of medicinal chemistry, FSBI «Zakusov Institute of Pharmacology», Moscow

Antipov Petr

ORCID ID: 0000-0002-6093-8805

SPIN code: 2591-3379

PhD, Senior Research Scientist, Laboratory of peptide bioregulators, Department of medicinal chemistry, FSBI «Zakusov Institute of Pharma calagra. Massayu

Pharmacology», Moscow

Антипова Татьяна Алексеевна

ORCID ID: 0000-0002-9309-4872

SPIN-код: 7723-6008

к. б. н., заведующая лабораторией фармакологии нейропротекции, ФГБНУ «НИИ фармакологии имени В.В. Закусова», Москва

Гудашева Татьяна Александровна

ORCID ID: 0000-0002-5185-4474

SPIN-код: 4970-0006

д. б. н., проф., член-корреспондент РАН, руководитель отдела, отдел химии лекарственных средств, ФГБНУ «НИИ фармакологии имени В.В. Закусова», Москва

Antipova Tatyana

ORCID ID: 0000-0002-9309-4872

SPIN code: 7723-6008

Candidate of Biological Sciences, head of the laboratory of pharmacology of neuroprotection, FSBI «Zakusov Institute of Pharmacology», Moscow

Gudacheva Tatiana

ORCID ID: 0000-0002-5185-4474

SPIN code: 4970-0006

PhD, Head of the Laboratory of neuroprotection pharmacology, FSBI «Zakusov Institute of

Pharmacology», Moscow

Литература / References

- 1. Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nature reviews. *Neurology*. 2009;5:311–322.
- 2. Schmidt HD, Duman RS. Peripheral BDNF Produces Antidepressant-Like Effects in Cellular and Behavioral Models. *Neuropsychopharmacology*. 2010;35:2378–2391.
- 3. Castren E, Rantamaki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. *Developmental Neurobiology*. 2010;70:289–297. DOI: http://dx.doi.org/10.1002/dneu.20758
 - 4. BDNF Study Group (Phase III). *Neurology*. 1999;52:1427–1433.
- 5. Poduslo JF, Curran GL. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res. *Mol. Brain Res.* 1996;36:280–286.
- 6. Гудашева Т.А., Тарасюк А.В., Помогайбо С.В., и др. Дизайн и синтез дипептидных миметиков мозгового нейротрофического фак-

- тора // Биоорганическая химия. 2012; Т.38. №3: С.280—290. [Gudasheva TA, Tarasyuk AV, Pomogaibo SV, et al. Design and synthesis of dipeptide mimetics of the brain-derived neurotrophic factor. *Russian Journal of Bioorganic Chemistry*. 2012;38(3):243—252. (In Russ).]
- 7. Гудашева Т.А., Тарасюк А.В., Сазонова Н.М., и др. Новый дипентидный миметик мозгового нейротрофического фактора селективно активирует сигнальный путь MAPK-Erk // Доклады Академии наук. 2017. Т.476. №1. С. 108—112. [Gudasheva TA, Tarasiuk AV, Sazonova NM, et al. A novel dimeric dipeptide mimetic of the BDNF selectively activates the MAPK-Erk signaling pathway. *Doklady Biochemistry and Biophysics*. 2017;47(1).108—112. (In Russ).]. DOI: 10.7868/S0869565217250235
- 8. Jackson GR, Werrbach-Perez K, Ezell EL, et al. Nerve growth factor effects on pyridine nucleotides after oxidant injury of rat pheochromocytoma cells. *Brain Res.* 1992;592(1-2):239–248.
- Kanazawa I. How do neurons die in neurodegenerative diseases? Trends Mol Med. 2001;7(8):339–344.