Фармакокинетика инъекционной лекарственной формы ГК-2 у кроликов

Шевченко Р. В., Литвин А. А., Колыванов Г. Б., Бочков П. О., Грибакина О. Г., Новицкий А. А., Жердев В. П.

ФГБНУ «НИИ фармакологии имени В.В. Закусова», Россия, Москва

Аннотация. Изучена фармакокинетика миметика фактора роста нервов ГК-2 (димерный дипептидный миметик 4-й петли NGF, производного фторзамещённого 5-[2-(5-фторпирид-3-ил)-этил)]-2,8-диметил-2,3,4,5-тетрагидро-1H-пиридо[4,3-b]индола) у кроликов после однократного внутривенного введения инъекционной лекарственной формы в дозе 24 мг (7,8–8,7 мг/кг). Концентрации ГК-2 в плазме крови животных определяли методом высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием. ГК-2 можно отнести к «короткоживущим» лекарственным веществам, т. к. период полувыведения из плазмы крови кроликов составил 0,9 ± 0,1 ч.

Ключевые слова: нейропротектор ГК-2; доклиническая фармакокинетика

Для цитирования:

Шевченко Р. В., Литвин А. А., Колыванов Г. Б., Бочков П. О., Грибакина О. Г., Новицкий А. А., Жердев В. П. Фармакокинетика инъекционной лекарственной формы ГК-2 у кроликов // Фармакокинетика и фармакодинамика. – 2020. – № 2. – С. 17–21. DOI: 10.37489/2587-7836-2020-2-17-21X

The pharmacokinetics of the injectable dosage form of GK-2 in rabbits

Shevchenko RV, Litvin AA, Kolyvanov GB, Bochkov PO, Gribakina OG, Novitskiy AA, Zherdev VP FSBI «Zakusov Research Institute of Pharmacology», Russia, Moscow

Abstract. The pharmacokinetics of the nerve growth factor mimetic GK-2 (dimeric dipeptide mimetic of the 4-th loop NGF, a derivative of fluoro-substituted 5-[2-(5-fluoropyrid-3-yl) -ethyl)]-2,8-dimethyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole) in rabbits after a single intravenous injection of an injectable dosage form at dose 24 mg (7,8-8,7 mg/kg). GK-2 concentrations in the blood plasma were determined by high-performance liquid chromatography with mass-spectrometric detection. GK-2 can be attributed to "short-lived" drugs, since the half-life from the rabbits blood plasma was 0.9±0.1 h.

Keywords: neuroprotector GK-2, preclinical pharmacokinetics

For citations:

Shevchenko RV, Litvin AA, Kolyvanov GB, Bochkov PO, Gribakina OG, Novitskiy AA, Zherdev VP. The pharmacokinetics of the injectable dosage form of GK-2 in rabbits. Farmakokinetika i farmakodinamika. 2020;(2):17–21. DOI: 10.37489/2587-7836-2020-2-17-21

Введение

Разработка нейропротективных средств лечения острых нарушений мозгового кровообращения является одной из проблем современной фармакологии [1].

В ФГБНУ «НИИ фармакологии имени В.В. Закусова» создан низкомолекулярный миметик фактора роста нервов — димерный дипептид ГК-2, активирующий специфические для NGF тирозинкиназные TrkAрецепторы и пострецепторный сигнальный путь Akt, преимущественно вовлечённый в нейропротекцию [2].

Необходимым этапом разработки оригинального лекарственного средства (ЛС) является изучение его фармакокинетики и метаболизма в эксперименте [3]. Выявление общих закономерностей и различий в фармакокинетике фармакологически активных веществ у экспериментальных животных разных видов позволяет наиболее точно экстраполировать значения фармакокинетических параметров на человека. Анализ доклинических исследований очень важен для оценки вероятности развития и характера побочных эффектов, обеспечивает полезной информацией при переносе данных с животных на человека для выбора

пути введения, расчёта дозы ЛС и продолжительности отбора проб крови у добровольцев для фазы I клинических исследований.

В соответствии с требованиями «Руководства по проведению доклинических исследований лекарственных средств» при изучении фармакокинетики нового фармакологического вещества требуется выполнить данное исследование минимум на двух видах экспериментальных животных [3]. Ранее была изучена доклиническая фармакокинетика соединения ГК-2 на крысах. Однако полученные в этих исследованиях результаты имеют некоторые недостатки, связанные с тем, что первичные данные носят дискретный характер. Другими словами, фармакокинетический профиль исследуемого вещества является суммой отдельных точек (концентраций), т. е. каждой концентрации соответствует отдельное животное. Изучение фармакокинетики ГК-2 на более крупных животных (не грызунах) - кроликах, позволяет обойти эти недостатки.

Цель данного исследования — изучение фармакокинетики инъекционной лекарственной формы Γ K-2 на кроликах.

Материалы и методы

Для проведения фармакокинетических исследований использовали фармацевтическую субстанцию ГК-2 (Серия—СН-13-88), синтезированную в лаборатории пептидных биорегуляторов ФГБНУ «НИИ фармакологии имени В.В. Закусова». На 6 кроликах-самцах породы шиншилла (питомник «Столбовая», Московская область) массой 2,75—3,10 кг проведено открытое фармакокинетическое исследование. Кроликам в краевую ушную вену (правое ухо) вводили 2 мл раствора, полученного путём растворения содержимого двух флаконов, в которых находился лиофилизированный порошок ГК-2, в воде для инъекций. Доза исследуемого вещества составила 24 мг (7,8—8,7 мг/кг).

Отбор проб крови проводили перед введением (контроль) и через 10; 20; 30; 45 мин, 1; 1,5; 2; 3 и 4 ч после введения препарата из краевой ушной вены левого уха животного.

Все манипуляции с экспериментальными животными выполнены в соответствии с нормативной документацией, касающейся гуманного обращения с животными, и стандартными операционными процедурами лаборатории фармакокинетики ФГБНУ «НИИ фармакологии имени В.В. Закусова». Проведение экспериментов с животными одобрено Комиссией по биомедицинской этике ФГБНУ «НИИ фармакологии имени В.В. Закусова», а также требованиям «Руководства по проведению доклинических исследований лекарственных средств» [3].

Для определения ГК-2 в плазме крови крыс и кроликов использовали метод высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием: высокоэффективный жидкост-

ной хроматограф с масс-селективным детектором типа «ионная ловушка» модели «Agilent 1200 Series LC/MSD Ion Trap» («Agilent», США), оборудованный системой автоматического ввода пробы, внешним источником ионов с ионизацией электроспреем при атмосферном давлении и управляемый компьютером с системой обработки данных «ChemStation» (v.1.0). Хроматографирование выполняли в условиях изократического элюирования. Детектирование проводили масс-спектрометрически по молекулярному иону с массовым числом m/z = 416, соответствующему дважды протонированному молекулярному иону ГК-2. Предел детектирования составил 5 нг/мл.

Межвидовые соотношения для фармакокинетических параметров ФС формируются на основе концепции биологического подобия, согласно которой у животных скорости протекания основных физиологических процессов одинаковы, если в качестве параметра «время» использовать не астрономическое (хронологическое), а «биологическое» или «физиологическое» время [5]. Для отображения полученных данных использовали метод Дедрика, где хронологические времена отбора проб крови животных пересчитывали в соответствующие «фармакокинетические» времена по уравнению:

$$t_{pk} = t/m^{0.25} (1),$$

где: t_{pk} – «фармакокинетическое» время;

m — масса тела кролика, кг;

t – хронологическое время, ч [6].

По профилям изменения концентраций ГК-2 в плазме крови кроликов в хронологическом времени и координатах Дедрика рассчитывали периоды полуэлиминации, выраженные в реальном ($t_{1/2el}$) и «фармакокинетическом» времени ($t_{1/2el}$ рк). Величину $t_{1/2el}$

Таблица 1 Фармакокинетические параметры ГК-2 в плазме крови кроликов после однократного внутривенного введения в дозе 7,8–8,7 мг/кг

No	$\mathrm{AUC}_{0 ightarrow t}$ (мкг/мл×ч)	k _{el} (ч ⁻¹)	$\mathrm{AUC}_{0 o\infty}$ (мкг/мл×ч)	t _{1/2el} (ч)	MRT (ч)	Cl (л/ч)	V _d (л)
1	8,46	0,7849	9,05	0,88	1,35	16,57	1,71
2	7,33	0,7493	7,90	0,93	1,43	18,99	1,92
3	8,42	0,7431	8,93	0,93	1,41	16,80	1,89
4	10,53	0,7761	11,15	0,89	1,18	13,45	1,52
5	13,02	0,6918	14,01	1,00	1,23	10,71	1,77
6	4,30	1,0427	4,63	0,66	1,04	32,40	0,99
\overline{x}	8,68	0,7980	9,28	0,88	1,27	18,15	1,63
SD	2,95	0,1243	3,15	0,12	0,15	7,56	0,35
C.V. %	33,95	15,57	33,94	13,22	11,87	41,62	21,24

Примечание: $AUC_{0\to t}$ — площадь под фармакокинетической кривой (площадь под кривой «концентрация фармацевтической субстанции (Φ C) — время») после в/в введения; $AUC_{0\to t}$ рассчитывается от момента введения Φ C до конкретного времени; $AUC_{0\to \infty}$ — площадь под фармакокинетической кривой (площадь под кривой «концентрация Φ C — время») после в/в введения; $AUC_{0\to \infty}$ рассчитывается от момента введения Φ C до бесконечности; MRT — среднее время удерживания Φ C в организме; $t_{1/2el}$ — период, за который выводится половина введённой и всосавшейся дозы Φ C; k_{el} — константа скорости элиминации; Cl — плазменный клиренс после в/в введения; V_d — кажущийся объём распределения после в/в введения

18

Nº 2. 2020 **I**

 Γ K-2 у человека ($t_{1/2el\,h}$) рассчитывали по уравнению:

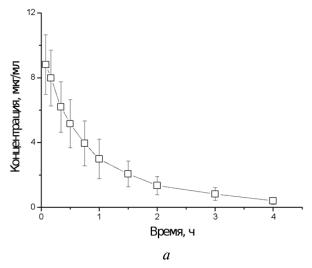
$$t_{1/2elh} = t_{1/2elpk} \times 75^{0.25} \tag{2}$$

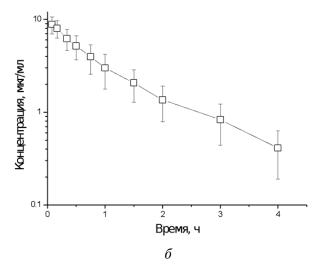
где: 75 — предполагаемая средняя масса тела добровольца, кг.

Полученные данные подвергали математической статистической обработке. В таблице 1, где приведены фармакокинетические параметры Γ K-2, представлены средние арифметические значения (\overline{x}) , соответствующие им стандартные отклонения (SD) и коэффициенты вариации (C.V. %). Для расчётов фармакокинетических параметров был использован модельно-независимый метод [7].

Результаты и их обсуждение

Хромато-масс-спектрометрический анализ плазмы крови показал, что в анализируемых образцах присутствует характеристический молекулярный ион, соответствующий неизменённой молекуле ГК-2. Усреднённая фармакокинетическая кривая ГК-2 в плазме крови кроликов после однократного внутривенного введения инъекционной лекарственной формы в натуральной (a) и полулогарифмической системе координат (δ) представлена на рис. 1.


Из рис. 1 видно, что кинетика анализируемого соединения подчиняется кинетике первого порядка, поскольку снижение концентрации Γ K-2 в плазме крови кроликов имеет монофазный характер. Концентрацию исследуемого вещества удалось отследить на всем протяжении эксперимента, т. е. 4 ч.


В табл. 1 представлены индивидуальные и усреднённые фармакокинетические параметры Γ K-2 в плазме крови кроликов после однократного внутривенного введения лиофилизата Γ K-2 в дозе 24 мг $(7,8-8,7\ \mathrm{Mr/kr})$.

Такие фармакокинетические параметры, как период полувыведения, равный 0.88 ± 0.12 ч, среднее время удерживания вещества в организме $(1.27 \pm 0.15$ ч), а также значительная величина плазменного клиренса $(18.15 \pm 7.56$ л/ч) указывают на относительно недолгое нахождение исследуемого вещества в системном кровотоке кроликов. Таким образом, ГК-2 можно отнести к группе «короткоживущих» ΦC .

Объём распределения — мера степени распределения ФС, которая определяется связыванием ФС с тканью, а также с белками плазмы крови, — является важной детерминантой периода полувыведения. Величина кажущегося объёма распределения (V_d) ГК-2 после в/в введения кроликам составила $1,63 \pm 0,35$ л. Кажущийся объём распределения обычно не эквивалентен анатомическому объёму, а отражает распределение препарата и степень его связывания в организме. Так, если препарат связывается преимущественно белками крови, V_d будет меньше, чем реальный. С другой стороны, преимущественное связывание препарата во внесосудистом пространстве приводит к превышению значения $V_{\scriptscriptstyle d}$ над реальным объёмом. В нашем случае, расчёт величины V_d дал высокие значения, указывающие, что ГК-2 распределяется во внесосудистом пространстве (плазма крови, органы) кроликов. Но учитывая, что исследуемая ФС практически полностью элиминирует из плазмы крови в течение 4 ч, можно предположить, что она не накапливается в тканях животных.

ГК-2 планируется использовать в клинической практике, поэтому необходимо спрогнозировать период полувыведения ФС у человека на основе экспериментальных данных, что может быть основой для оптимизации регламента отбора проб при фармакокинетическом изучении препарата в клинике, а также при оптимизации режима дозирования для

Рис. 1. Усреднённые фармакокинетические профили Γ K-2 в плазме крови кроликов после однократного внутривенного введения 24 мг (7,8–8,7 мг/кг) лиофилизата Γ K-2:

a — натуральные координаты; δ — полулогарифмическая система координат (n = 6; \overline{x} ± SD)

поддержания терапевтических концентраций соединения в плазме крови [3].

На основе аллометрического подхода (метод Дедрика), хронологические времена отбора проб крови животных пересчитывали в соответствующие «фармакокинетические» времена. Установлено, что значение $t_{1/2el}$ ГК-2 у кроликов, полученное на основании усреднённого фармакокинетического профиля, составило 0,88 ч, при этом после преобразований (в рамках 1-камерной модели с всасыванием) величина $t_{1/2\,el\,pk}$ снизилась до 0,69 ч.

Прогнозируемая величина $t_{1/2\,el}$ ГК-2, рассчитанная для человека по уравнению (2) на основе данных, полученных на кроликах, составила 2,03 ч. Таким образом, полученные результаты позволяют сделать предположение, что $t_{1/2el}$ у человека будет не менее 2 ч. Через 5 периодов полувыведения концентрация исследуемого вещества в плазме крови составит немногим более 3 %. Таким образом, продолжительность отбора проб крови у добровольцев для I фазы клинических исследований составит 10-12 ч.

Подобные расчёты, выполненные для других Φ С, показали, что для антипсихотика дилепта фактический период полувыведения у человека, равный 1,91 \pm 2,12 ч в большей степени соответствует параметру, спрогнозированному на основе данных, полученных у крыс (2,02 ч), против 2,25 ч — у кроликов [5]. Для анксиолитика Γ Б-115 среднее значение периода полуэлиминации у добровольцев составило 1,0 \pm 0,2 ч [8]. Прогностическая величина $t_{1/2}$ е Γ Б-115 у человека на ос-

нове данных, полученных на крысах, составила 1,73 ч и данных, полученных на кроликах -2,60 ч, соответственно [9]. Близкие значения прогнозируемого и фактического периода полувыведения подтверждают актуальность межвидового переноса на основе аллометрического подхода.

Выводы

- 1. Изучена фармакокинетика нового потенциального нейропротектора ГК-2 у кроликов после однократного внутривенного введения инъекционной лекарственной формы.
- 2. ГК-2 можно отнести к группе «короткоживущих» лекарственных веществ.
- 3. На основе межвидового переноса проведён расчёт периода полувыведения $(t_{1/2el})$ ГК-2 у человека, который по предварительным оценкам, составил не менее 2 ч.

ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ

Конфликт интересов. Исследование не имело спонсорской поддержки. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать.

Участие авторов. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

СВЕДЕНИЯ ОБ АВТОРАХ

Шевченко Роман Владимирович

ORCID ID: 0000-0003-4646-7733

SPIN-код: 1844-6202

к. м. н., н. с. лаборатории фармакокинетики ФГБНУ «НИИ фармакологии имени

В.В. Закусова», Россия, Москва

Литвин Александр Алексеевич

ORCID ID: 0000-0002-2818-3457

SPIN-код: 6193-5770

д. б. н., в. н. с. лаборатории фармакокинетики

ФГБНУ «НИИ

фармакологии имени В.В. Закусова»,

Россия, Москва

Колыванов Геннадий Борисович

ORCID ID: 0000-0002-2571-0047

SPIN-код: 2538-8639

д. б. н., в. н. с. лаборатории фармакокинетики

ФГБНУ «НИИ фармакологии имени

В.В. Закусова», Россия, Москва

Shevchenko Roman V.

ORCID ID: 0000-0003-4646-7733

SPIN code: 1844-6202

PhD in Medicine, Research Officer of laboratory pharmacokinetics FSBI «Zakusov institute of

Pharmacology», Russia, Moscow

Litvin Alexander A.

ORCID ID: 0000-0002-2818-3457

SPIN code: 6193-5770

D. Sci. in Biology, leading researcher of the laboratory of pharmacokinetics FSBI «Zakusov institute

of Pharmacology», Russia, Moscow

Kolyvanov Gennadiy B.

ORČID ID: 0000-0002-2571-0047

SPIN code: 2538-8639

D. Sci. in Biology, Leading researcher of the laboratory of pharmacokinetics FSBI «Zakusov insti-

tute of Pharmacology», Russia, Moscow

Бочков Павел Олегович

ORCID ID: 0000-0001-8555-5969

SPIN-код: 5576-8174

к. б. н., с. н. с. лаборатории фармакокинетики

ФГБНУ «НИИ фармакологии имени В.В. Закусова», Россия, Москва

Грибакина Оксана Геннадьевна

ORCID ID: 0000-0002-4604-4346

SPIN-код: 6266-8161

к. б. н., н. с. лаборатории фармакокинетики

ФГБНУ «НИИ фармакологии имени

В.В. Закусова», Россия, Москва

Новицкий Александр Александрович

ORCID ID: 0000-0003-3188-6257

н. с. лаборатории фармакокинетики ФГБНУ «НИИ фармакологии имени В.В. Закусова»,

Россия, Москва

Жердев Владимир Павлович

Автор, ответственный за переписку

e-mail: zherdevpharm@mail.ru ORCID ID: 0000-0003-2710-7134

SPIN-код: 2213-9592

д. м. н., профессор, заведующий лабораторией

фармакокинетики ФГБНУ «НИИ

фармакологии имени В.В. Закусова», Россия,

Москва

Bochkov Pavel O.

ORCID ID: 0000-0001-8555-5969

SPIN code: 5576-8174

PhD in Biology, Senior Research Officer of laboratory pharmacokinetics FSBI «Zakusov institute of

Pharmacology», Russia, Moscow

Gribakina Oxana G.

ORCID ID: 0000-0002-4604-4346

SPIN code: 6266-8161

PhD in Biology, Research Officer of laboratory pharmacokinetics FSBI «Zakusov institute of

Pharmacology», Russia, Moscow

Novitskiy Alexander A.

ORCID ID: 0000-0003-3188-6257

Research Officer of laboratory pharmacokinetics FSBI «Zakusov institute of Pharmacology»,

Russia, Moscow

Zherdev Vladimir

Corresponding author

e-mail: zherdevpharm@mail.ru ORCID ID: 0000-0003-2710-7134

SPIN code: 2213-9592

D. Sci. in Medicine, professor, Head of laboratory pharmacokinetics FSBI «Zakusov institute of

Pharmacology», Russia, Moscow

Литература / References

1. Пирадов М.А., Таняшян М.М., Домашенко М.А., Максимова М.Ю. Нейропротекция при цереброваскулярных заболеваниях: поиск жизни на Марсе или перспективное направление лечения? Часть 1. Хронические нарушения мозгового кровообрашения // Анналы клинической и экспериментальной неврологии. — 2015. — Т. 9. — № 1. — С. 41—50. [Piradov MA, Tanashyan MM, Domashenko MA, Maksimova MYu. Neuroprotection in cerebrovascular diseases: is it the search for life on Mars or a promising trend of treatment? Part 1. Acute stroke. Annals of Clinical and Experimental Neurology. 2015;9(1):41—50. (In Russ).]

2. Gudasheva TA, Povarnina PYu, Antipova TA, Seredenin SB. A Novel Dimeric Dipeptide Mimetic of the Nerve Growth Factor Exhibits Pharmacological Effects upon Systemic Administration and Has No Side Effects Accompanying the Neurotrophin Treatment. *Neuroscience and Medicine*, 2014;5(2):101–108. DOI: 10.4236/nm.2014.52013.

- 3. Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К; 2012. 17–24 с. [Guidance on Preclinical Evaluation of Medicines. Part 1. Moscow: Grif i K; 2012. (In Russ).]
- 4. Davies M, Jones R, Grime K et al. Improving the Accuracy of Predicted Human Pharmacokinetics: Lessons Learned from the AstraZeneca Drug Pipeline Over Two Decades. *Trends in Pharmacological Sciences*. 2020;S0165-6147(20)30068-7. DOI: 10.1016/j.tips.2020.03.004
- 5. Шевченко Р.В. Клинико-экспериментальная фармакокинетика нового дипептидного препарата дилепт: Дисс. ... канд. мед. наук. М.:

2016. [Shevchenko RV. Kliniko-eksperimental'naya farmakokinetika novogo dipeptidnogo preparata dilept. [dissertation] Moscow: 2016. (In Russ).] Доступно по: https://www.academpharm.ru/images/upload/ru/1425/Dissertaciya_SHevchenko_R.V.1.pdf. Ссылка активна на 14.05.2020.

- 6. Dedrick RL. Animal scale-up. J. *Pharmacokin. and Biopharmac*. 1973;1(5):435–461.
- 7. Агафонов А.А., Пиотровский В.К. Программа M-ind оценки системных параметров фармакокинетики модельно-независимым методом статистических моментов // Xимико-фармацевтический журнал. 1991. № 10. С. 16—19. [Agafonov AA, Piotrovskii VK, Programma M-ind otsenki sistemnykh parametrov farmakokinetiki model'no-nezavisimym metodom statisticheskikh momentov. Khimiko-farmatsevticheskii zhurnal. 1991;(10):16—19. (In Russ).]
- 8. Жердев В.П., Колыванов Г.Б., Литвин А.А. и др. Клиническая фармакокинетика оригинального дипептидного анксиолитика ГБ-115. // Фармакокинетика и фармакодинамика. 2017. № 1. С. 52—55. [Zherdev VP, Kolyvanov GB, Litvin AA et al. Clinical pharmacokinetics of a new original dipeptide anxiolytic GB-115. Farmakokinetika i farmakodinamika. 2017;(1):52—55. (In Russ).]
- 9. Раскин С.Ю. Клинико-экспериментальная фармакокинетика нового дипептидного анксиолитика ГБ-115: Дис. ... канд. мед. наук. М.: 2019. [Raskin SYu. Kliniko-eksperimental'naya farmakokinetika novogo dipeptidnogo anksiolitika GB-115. [dissertation] Moscow: 2019. (In Russ).] Доступно по: https://www.academpharm.ru/images/upload/ru/1540/Dissertaciya_Raskin_S.YU..pdf. Ссылка активна на 14.05.2020.

Статья поступила в июне 2020 г.