Генетический полиморфизм и фармакокинетика лекарственных средств

И. И. Мирошниченко ^1, С. Н. Птицина ^2 1 — НЦПЗ РАМН, г. Москва 2 — ВНЦБАВ, Купавна, Московская область

Взаимосвязь фармакологии и генетики носит двусторонний характер. С одной стороны, в рамках медицинской генетики изучается влияние лекарственных веществ на генетический аппарат. В настоящий момент необходимым этапом при создании новых лекарственных средств является изучение их мутагенности, что значительно повышает безопасность применения лекарств, исключая на доклиническом этапе вероятность нежелательных отдаленных последствий индуцированных мутаций.

С другой стороны, воздействие лекарственных веществ на организм человека зависит от фенотипа эндогенных систем, опосредующих их фармакодинамику и фармакокинетику [2]. Это направление получило название фармакогенетика. В настоящее время у человека установлены генетические различия практически по всем ферментам, метаболизирующим лекарства. Одной из задач фармакогенетики, имеющей как общебиологическое, так и клиническое значение, является выяснение генетических и внешних причин различной реакции индивидуумов на лекарственные препараты (значения ряда фармакокинетических параметров могут отличаться в 4-40 раз, в зависимости от вида препарата и характера популяционных исследований).

В настоящее время наблюдается устойчивый интерес к генетически обусловленным факторам риска и вариабельности терапевтического эффекта. В перспективе генотипирование пациентов приведет к снижению количества наследственных заболеваний и оптимизации терапии путем выявления генетического полиморфизма изоферментов цитохрома Р450 (СҮР) и N-ацетилтрансферазы [1, 5]. При наличии полиморфизма в популяции выделяют группы с нормальным метаболизмом, замедленным метаболизмом (при наличии двух инактивных аллелей) и сверхинтенсивным метаболизмом (повышенная ферментативная экспрессия). Соответственно, возникает опасность неэффективности терапии при сверхинтенсивном метаболизме и, наоборот, возникновения токсических проявлений при замедленном метаболизме.

Большинство реакций I фазы метаболизма лекарственных средств катализируется цитохромом P450, гемосодержащим белком, связанным с мембранами эндоплазматического ретикулюма. Ферменты семейства цитохром P450 локализованы, преимущественно, в гепатоцитах, хотя известны и другие места их локализации (стенка кишечника, почки, легкие, кожа и кровь). Реакция протекает в несколько этапов, но в конечном результате приводит к переносу атома кислорода субстрату (R-H) с участием кофермента NADPH:

 $NADPH+H^++O_2+R-H\rightarrow @NADP^++H_2O+R-OH.$

У человека обнаружено, по меньшей мере, 12 классов цитохрома Р450, различающихся по аминокислотной последовательности. Три из них (СҮР1, СҮР2, СҮР3) ответственны за большинство процессов биотрансформации. Эти классы, в свою очередь, подразделяются на подклассы: СҮР1А, СҮР2В и т.д. Индивидуальные изоферменты подклассов отличаются по арабской цифре в конце аббревиатуры, означающей порядок открытия этой изоформы (СҮР1А2). Среди около 30 встречающихся у человека изоферментов, наибольший вклад в метаболизм ксенобиотиков вносят СҮР1А2, СҮР2С9, СҮР2С19, СҮР2В6, СҮР2Е1, СҮР3А4/5 и, в некоторой мере, СҮР2А6 и СҮР2В6 (табл. 1).

Таблица 1.
Процент от общего числа зарегистрированных препаратов,
подвергающихся метаболизму посредством определенной изоформы
цитохрома P450

Фермент	Процент от общего числа		
CYP2A6	3		
CYP2B6	3		
CYP2E1	4		
CYP2C19	8		
CYP1A1/2	11		
CYP2C8/9	16		
CYP2D6	19		
CYP3A4/5	36		

Подкласс СҮР2В широко распространен и достаточно хорошо изучен у экспериментальных животных, однако его роль в лекарственной биотрансформации у человека ограничена. Наибольшее значение в метаболизме препаратов у человека играет СҮРЗА4. Эта изоформа, большей частью, локализована в печени, но присутствует также и в ЖКТ. Среди лекарственных средств, подвергающихся биотрансформации, как в печени, так и в ЖКТ, следует упомянуть циклоспорин, верапамил и применяющиеся для лечения ВИЧ ингибиторы протеазы. Все они обладают высокими значениями клиренса и являются субстратом СҮРЗА4. В одной и той же клетке могут присутствовать разные изоформы цитохрома Р450, но, как правило, метаболизм конкретного препарата катализирует определенный изофермент, хотя наблюдаются и примеры иного рода, например амитриптилин (табл. 2).

Подобный мультисубстратный метаболизм вносит определенный вклад в межлекарственное взаимолействие.

Среди факторов, влияющих на ферментативную активность семейства цитохромов Р450, следует выде-

лить генетический полиморфизм (экспрессия признака выражена несколькими генами), лекарственное взаимодействие при совместном применении, заболевания и возраст человека [14]. Различные аллели генов этого семейства приводят к значительной вариабельности экспрессии и, как следствие, к «фармакогенетическому полиморфизму» популяции. Показано, что имеются значительные отличия в исследованных выборках между СҮР2С9, СҮР2С19, СҮР2D6 и СҮР3А5, ответственных за метаболизм большинства лекарственных веществ, элиминируемых через печень.

В качестве примера можно привести работу. У. Наshimoto и соавт. [8] по изучению индивидуальной чувствительности к факторам, вызывающим коронарные заболевания сердца в зависимости от потребления алкоголя. Исследовали взаимосвязь между клиническими характеристиками (кровяное давление, содержание триглицеридов и мочевой кислоты) и генетическим полиморфизмом алкогольдегидрогенезы (ADH)2 и альдегиддегидрогеназы (ALDH)2. Генотип ADH2 определяли с помощью полимеразной цепной реакции (ПЦР) с последующей обработкой рестрик-

Таблица 2. Характеристики основных изоферментов цитохрома Р450 печени человека [4, 7, 18]

Изофермент	Субстраты	Индукторы	Ингибиторы
CYP1A2	Амитриптилин, ацетаминофен, кофеин, клозапин, имипрамин, оланзапин, ондасетрон, пропранолол, теофиллин, такрин, (R)-варфарин	Сигаретный дым, древесный уголь, жареная пища, инсулин, омепразол	Амиодарон, мибефрадил, норфлоксацин, тиклопидин, ципрофлоксацин, эноксацин,
CYP2A6	Бетадеин, кумарин, никотин	Барбитураты	
CYP2B6	Бупропион, изофосфамид, метадон, эфавиренц	Рифампин, фенобарбитал	Тиклодипин
CYP2C9	Амитриптилин, диклофенак, ибупрофен, пироксикам, фенитоин, (S)—варфарин.	Рифампин	Амиодарон, ритонавир
CYP2C19	Амитриптилин, дапсон, диазепам, омепразол, циталопрам	Дексаметазон, фенобарбитал	Ритонавир
CYP2D6	β-адреноблокаторы, дебризоквин, декстрометорфан, омепразол, трициклические антидепрессанты	Беременность, дексаметазон, рифампин	Дезипрамин, кломипрамин, пароксетин, сертралин, тиоридазин, флуоксетин, хинидин
CYP2E1	Ацетаминофен, венлафаксин, галотан, этанол	Этанол, изониазид	Дисульфирам, циметидин

тазой МаеIII; генотип ALDH2 определяли на основе анализа полиморфизма длин амплифицированных продуктов с использованием трех олигонуклеотидных праймеров. Полученные результаты позволили разделить исследуемую популяцию из 133 человек, потребляющих>300 г алкоголя в неделю, на три группы с генотипами ADH $2^1/2^1$, ADH $2^1/2^2$ и ADH $2^2/2^2$. С помощью регрессионного анализа выявили корреляцию между частотой коронарных заболеваний сердца и генотипом ADH $2^2/2^2$ и пришли к заключению, что индивидуумы с генотипом ADH $2^1/2^1$ могут легче переносить отрицательные последствия алкоголя.

Популяция в США насчитывает около 50% лиц со сниженной активностью N-ацетилтрансферазы — фермента, ацетилирующего ряд препаратов (изониазида, гидралазина, сульфалазина) [22].

Примерно у 1 из 1500 человек выявлен дефицит псевдохолинэстеразы, фермента ответственного за гидролиз эфирных связей [17].

Снижение дебризохин гидроксилазной активности обусловлено изменением активности CYP2D6. Индоевропейская популяция насчитывает от 5 до 10% лиц с дефицитом данного фермента (табл. 3). Большое количество препаратов (β-адреноблокаторы, антиаритмики, трициклические антидепрессанты, нейролептики) являются субстратами CYP2D6 и наблюдаемое 10-20-кратное различие в метаболизме этих веществ у человека также объясняется полиморфизмом. Обнаружен также полиморфизм стереоселективного гидроксилирования S-мефенитоина. Медленный метаболизм, опосредованный СҮР2С19, наблюдается у 3% европейцев и 15% жителей Азиатско-Тихоокеанского региона (табл. 3). Дефицит изоферментов группы СҮР2С наблюдается у 2-5% европейцев, 18-23% японцев и у 5-17% китайцев [18].

У примерно 50% японцев и китайцев, и практически поголовно у малых северных народов наблюдается дефицит альдегиддегидрогеназы-2, фермента, ответственного за утилизацию алкоголя в организме человека. Дефицит другого фермента, вовлеченного в метаболизм алкоголя, алкогольдегидрогеназы, обнаружен у 85% азиатской популяции, 5-10% англичан, 9-14% жителей Германии и 20% швейцарцев. Низкая ферментативная активность глюкозо-6-фосфат дегидрогеназы выявлена у африканцев и жителей Среди-

земноморья. Данное обстоятельство приводит к риску возникновения гемолитической анемии при приеме препаратов с антиоксидантными свойствами [22].

Широкий диапазон ответной реакции на лекарственные препараты может быть связан с генетическим полиморфизмом транспортных белков, например, Р-гликопротеинов [13], полипептидов-транспортеров анионов, действующих в І фазу абсорбции, цитохромов Р450 или ферментов ІІ фазы метаболизма — N-ацетилтрансфераз и тиопурин S-метилтрансфераз.

Генетический полиморфизм СҮР2С9 обусловливает разницу в метаболизме глипизида (резко выраженная гипогликемия) и фенитоина (табл. 4). Генотипирование пациента, не способного эффективно метаболизировать глипизид, выявило, что данный субъект был гомозиготен по СҮР2С9*3 аллели, то есть показана очевидная связь между генотипом СҮР2С9*3*3 и вызываемой данным препаратом гипогликемией. Необходимость в генотипировании, и, как следствие, в корректировке лечащим врачом терапевтической дозы, показана и для препаратов с узкими границами терапевтической дозы, например, противоэпилептического препарата фенитоина и варфарина, при введении стандартной дозы которого у пациентов с медленным метаболизмом возрастал риск геморрагических осложнений. Установили [20], что у данных пациентов наблюдается гомозиготность СҮР2С9*3 аллеля цитохрома Р450.

Показано, что у лиц с медленным метаболизмом омепразола (субстрат CYP2C19) наблюдается значительно лучший терапевтический эффект по отношению к *Helicobacter pylori*, чем у субъектов с интенсивным (нормальным) метаболизмом [21]. Кодеин является пролекарством, которое подвергается метаболизму посредством изофермента CYP2D6, с образованием активной формы морфина. Вследствие этого у пациентов с медленным метаболизмом, обусловленным СYP2D6, кодеин в качестве анальгетика неэффективен [21].

В связи с вышесказанным встает вопрос о возможности лабораторной и, особенно клинической генодиагностики с целью оптимизации терапевтической эффективности лекарств. Генотипирование включает идентификацию определенных генетических мутаций, приводящих к специфическому фенотипу метаболиз-

Таблица 3.

Количество лиц с замедленным метаболизмом (РМ) и сверхинтенсивным метаболизмом (UEM) в процентах от всей популяции

у различных расовых и этнических групп

Фермент	Индоевр	опейцы	Монго	лоиды	Негр	ОИДЫ	Ара	1 бы
	PM	UEM	PM	UEM	PM	UEM	PM	UEM
CYP2D6	5–10	1–10	1	0–2	0–20	2	1,8–2	10–29
CYP2C9	0,2–1	нд	2–3	НД	нд	НД	НД	нд
CYP2C19	2–4	нд	10–25	НД	1–5	нд	2*	нд

Примечание: НД- нет данных, * - данные по Саудовской Аравии.

ма препаратов. К мутациям относятся генетические изменения, вызывающие повышенную экспрессию фермента (генные дупликации), отсутствие активного генного продукта (нуль аллели) или продукция мутантного белка с ослабленной каталитической способностью (инактивированные аллели).

Прогресс в этом направлении стал возможен с разработкой метода, позволяющего проводить успешный скрининг генетических мутаций, связанных с изменением метаболизма лекарств и чувствительности к канцерогенам, и заключающийся в амплификации специфического района гена с помощью ПЦР с последующей обработкой амплифицированного генного продукта рестрикционными эндонуклеазами, разрезающими ДНК с высокой специфичностью. По характеру возникающих рестрикционных фрагментов и их полиморфизму можно судить о возникающих внутри определенной последовательности ДНК точковых мутациях. Различия в размере фрагментов в сравнении с контрольными образцами ДНК определяются с помощью электрофореза в агарозном геле с последующим окрашиванием фрагментов ДНК бромистым этидием. Данный метод RFLP (ПДРФ — полиморфизм длин рестрикционных фрагментов) часто упоминается в публикациях [9, 11, 19].

Второй метод, применяемый для определения мутаций внутри гена, заключается в аллель-специфичной ПЦР-амплификации, когда в параллельных реакциях амплификации используются олигонуклеотиды, специфичные для гибридизации с основными или вариантными аллелями. При этом амплифицированный продукт дают только последовательности-мишени, гибридизующиеся с зондами, анализ осуществляется также методом электрофореза в агарозном геле. Примером применения этого метода является идентификация аллельных вариантов А и Б CYP2D6. [15]. Этот метод генотипирования хорош тем, что требует малых количеств крови или ткани и обеспечивает результаты через 48-72 ч, позволяя провести быструю коррекцию дозы и введение препарата. Для уточнения генотипа используют метод гибридизации по Саузерну, но для клинических целей это не является необходимым.

Следует отметить постоянное усовершенствование и разнообразие методов ПЦР-детекции, разработку новых специфичных праймеров и микрочипов ДНК,

позволяющих как усилить возможности идентификации генов, так и ускорить проведение генотипирования в клинических условиях на сравнительно недорогом и удобном оборудовании.

Примером может служить выявление нового аллеля *14В СҮР2D6, а также шести дуплицированных аллелей СҮР2D6 при анализе китайской популяции [10]. Полиморфизм по данному гену имеет большое клиническое значение для ряда антидепрессантов, нейролептиков и антиаритмиков [3]. В обзоре [16] схематично представлена структурная организация хромосомы 22, включающей локусы СҮР2D6, СҮР2D7 и СҮР 2D8Р, и картированной с помощью рестриктазы Xbal. Идентифицированы мутации, связанные с наличием двух псевдогенов СҮР2D7Р и СҮР2D8Р, делеций и дупликаций генов. Первым доказательством генетического полиморфизма гена СҮР2D6 было выявление гомозиготной генной делеции СҮР2D6, связанной с ослабленным лекарственным метаболизмом [3].

При интерпретации данных генотипирования следует уточнить, что гомозиготность по генным делециям встречается очень редко и составляет<4% PM (0,4%) от всей популяции).

В заключение хотелось бы подчеркнуть важное значение сочетания генотипирования с терапевтическим лекарственным мониторингом, позволяющим предсказывать РМ и UEM фенотипы и индивидуализировать терапевтический подход к человеку. Интенсивные разработки технологии микрочипов ДНК в совокупности с успешной реализацией Международной программы «Геном человека» позволят в будущем снизить расходы на проведение скрининга и поднять медицинское обслуживание на качественно новую ступень.

Таким образом, имеющийся в настоящее время объем информации трансформирует фармакогенетику из теоретической науки в практическую дисциплину, вписывающуюся в рамки клинической фармакологии, поскольку появилась возможность типировать пациентов по признакам, прогнозирующим индивидуальные эффекты лекарств, что, безусловно, открывает новые возможности рационализации фармакотерапии.

Расшифровка генома человека ведет к дальнейшему продвижению фармакогенетики и решению задач, описываемых вновь введенным термином «фармакогеномика» [6].

Таблица 4. Различия в показателях фармакокинетики глипизида и фенитоина у 24 здоровых добровольцев с замедленным метаболизмом (РМ) и интенсивным (нормальным) метаболизмом (ЕМ) после однократного приема в терапевтических дозах [12]

Параметр	Глипизид		Фенитоин		
	EM (n=23)	PM (n=1)	EM (n=23)	PM (n=1)	
Т _{1/2} , ч	5±2	11	14±4	47	
С _{тах} , мкг/мл	252±81	1270	2±1	2	
AUC, мкг×ч/мл	4712±707	25686	47±14	200	

ЛИТЕРАТУРА

- 1. Евгеньев М. И., Гармонов С. Ю., Погорельцев В. И. и др. Определение фенотипа ацетилирования для терапевтического мониторинга лекарственных средств. Клин лаб диагностика 1996; 5: 24-27.
- 2. Середенин С. Б., Вальдман Е. А. Фармакология и генетика. Новые перспективы и возможности. Вестник РГМУ 2003; 4: 30: 75-77.
- 3. Brosen K., Gram L. F. Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 1989; 36: 537—547.
- 4. Buck M. L. The cytochrome P450 enzyme system and its effect on drug metabolism. Pediatr Pharmacother 1997; 3: 5: 211-216.
- 5. Dahl M. L. Cytochrome P450 phenotyping in patients receiving antipsychotics. Useful aid to prescribing? Clin Pharmacokin 2002; 41: 453-470.
- 6. Flexner C. W. Advances in HIV pharmacology: protein binding, pharmacogenomics, and therapeutic drug monitoring. Top HIV Med 2003; 11: 2: 40-44.
- 7. Gunaratna C. Drug metabolism and pharmacokinetics in drug discovery: a primer for bioanalytical chemists, part I. Current Separations BAS 2000; 19: 1: 17-23.
- 8. Hashimoto Y, Nakayama T. Futamura A. et al. Relationship between genetic polymorphisms of alcohol-metabolizing enzymes and changes in risk factors for coronary heart disease associated with alcohol consumption. Clin Chem 2002; 48: 7: 1043-1048.
- 9. Harris C. C. Interindividual variation among humans in carcinogen metabolism, DNA adduct formation and DNA repair. Carcinogenesis 1989; 10: 1563—1566.
- 10. Ji L., Pan S., Marti-Jaun J. et al. Single-step assays to analyze CYP2D6 gene polymorphisms in Asians: allele frequencies and a novel *14B allele in mainland Chinese. Clin Chem 2002; 48: 7: 983-988.
- 11. Kawajiri K., Nakachi K., Imai K. et al. Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett 1990; 263: 131–133.
- Kidd R. S., Straughn A. B., Meyer M. C. et al. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics 1999: 9: 1: 71-80.
- 13. Kurata Y., Ieiri I., Kimura M. et al. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther 2002; 72: 209-219.
- 14. Kwan K. C. Oral bioavailability and first-pass effects. Drug Metab Dispos 1997; 25: 12: 1329-1336.
- 15. Linder M. W., Prough R. A., Valdes R. Jr. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin Chem 1997; 43: 2: 254-266.
- 16. Linder M. W., Valdes R. Jr. Genetic mechanisms for variability in drug response and toxicity. J Anal Toxicol 2001; 25: 5: 405-413.
- 17. Maiorana A., Roach R. B. Jr. Heterozygous pseudocholinesterase deficiency: a case report and review of the literature. J Oral Maxillofac Surg. 2003; 61: 7: 845-847.
- 18. Meyer J. M., Rodvold K. A. Drug biotransformation by the cytochrome P-450 enzyme system. Infect Med 1996; 13: 6: 452, 459, 463-464, 523.
- 19. Nakachi K., Imai K., Hayashi S., Watanabe J. Genetic susceptibility to squamous cell carcinoma of the lung in relation to cigarette smoking dose. Cancer Res 1991; 51: 5177—5180.
- 20. Rettie A. E., Wienkers L. C., Gonzalez F. J. et al. Impaired (S) -warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994: 4: 39-42.
- 21. Rogers J. F., Nafziger A. N., Bertino J. S. Jr. Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450-metabolized drugs. Am J Med 2002; 113: 9: 746-750.
- 22. Weber W. W. Populations and genetic polymorphisms. Mol Diagn 1999; 4: 4: 299-307.